Mercurial > repos > bgruening > sklearn_numeric_clustering
comparison fitted_model_eval.py @ 35:e38a2675db5e draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
author | bgruening |
---|---|
date | Fri, 01 Nov 2019 17:03:46 -0400 |
parents | |
children | 006e27f0a7ef |
comparison
equal
deleted
inserted
replaced
34:d5d98ed61fa2 | 35:e38a2675db5e |
---|---|
1 import argparse | |
2 import json | |
3 import pandas as pd | |
4 import warnings | |
5 | |
6 from scipy.io import mmread | |
7 from sklearn.pipeline import Pipeline | |
8 from sklearn.metrics.scorer import _check_multimetric_scoring | |
9 from sklearn.model_selection._validation import _score | |
10 from galaxy_ml.utils import get_scoring, load_model, read_columns | |
11 | |
12 | |
13 def _get_X_y(params, infile1, infile2): | |
14 """ read from inputs and output X and y | |
15 | |
16 Parameters | |
17 ---------- | |
18 params : dict | |
19 Tool inputs parameter | |
20 infile1 : str | |
21 File path to dataset containing features | |
22 infile2 : str | |
23 File path to dataset containing target values | |
24 | |
25 """ | |
26 # store read dataframe object | |
27 loaded_df = {} | |
28 | |
29 input_type = params['input_options']['selected_input'] | |
30 # tabular input | |
31 if input_type == 'tabular': | |
32 header = 'infer' if params['input_options']['header1'] else None | |
33 column_option = (params['input_options']['column_selector_options_1'] | |
34 ['selected_column_selector_option']) | |
35 if column_option in ['by_index_number', 'all_but_by_index_number', | |
36 'by_header_name', 'all_but_by_header_name']: | |
37 c = params['input_options']['column_selector_options_1']['col1'] | |
38 else: | |
39 c = None | |
40 | |
41 df_key = infile1 + repr(header) | |
42 df = pd.read_csv(infile1, sep='\t', header=header, | |
43 parse_dates=True) | |
44 loaded_df[df_key] = df | |
45 | |
46 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
47 # sparse input | |
48 elif input_type == 'sparse': | |
49 X = mmread(open(infile1, 'r')) | |
50 | |
51 # Get target y | |
52 header = 'infer' if params['input_options']['header2'] else None | |
53 column_option = (params['input_options']['column_selector_options_2'] | |
54 ['selected_column_selector_option2']) | |
55 if column_option in ['by_index_number', 'all_but_by_index_number', | |
56 'by_header_name', 'all_but_by_header_name']: | |
57 c = params['input_options']['column_selector_options_2']['col2'] | |
58 else: | |
59 c = None | |
60 | |
61 df_key = infile2 + repr(header) | |
62 if df_key in loaded_df: | |
63 infile2 = loaded_df[df_key] | |
64 else: | |
65 infile2 = pd.read_csv(infile2, sep='\t', | |
66 header=header, parse_dates=True) | |
67 loaded_df[df_key] = infile2 | |
68 | |
69 y = read_columns( | |
70 infile2, | |
71 c=c, | |
72 c_option=column_option, | |
73 sep='\t', | |
74 header=header, | |
75 parse_dates=True) | |
76 if len(y.shape) == 2 and y.shape[1] == 1: | |
77 y = y.ravel() | |
78 | |
79 return X, y | |
80 | |
81 | |
82 def main(inputs, infile_estimator, outfile_eval, | |
83 infile_weights=None, infile1=None, | |
84 infile2=None): | |
85 """ | |
86 Parameter | |
87 --------- | |
88 inputs : str | |
89 File path to galaxy tool parameter | |
90 | |
91 infile_estimator : strgit | |
92 File path to trained estimator input | |
93 | |
94 outfile_eval : str | |
95 File path to save the evalulation results, tabular | |
96 | |
97 infile_weights : str | |
98 File path to weights input | |
99 | |
100 infile1 : str | |
101 File path to dataset containing features | |
102 | |
103 infile2 : str | |
104 File path to dataset containing target values | |
105 """ | |
106 warnings.filterwarnings('ignore') | |
107 | |
108 with open(inputs, 'r') as param_handler: | |
109 params = json.load(param_handler) | |
110 | |
111 X_test, y_test = _get_X_y(params, infile1, infile2) | |
112 | |
113 # load model | |
114 with open(infile_estimator, 'rb') as est_handler: | |
115 estimator = load_model(est_handler) | |
116 | |
117 main_est = estimator | |
118 if isinstance(estimator, Pipeline): | |
119 main_est = estimator.steps[-1][-1] | |
120 if hasattr(main_est, 'config') and hasattr(main_est, 'load_weights'): | |
121 if not infile_weights or infile_weights == 'None': | |
122 raise ValueError("The selected model skeleton asks for weights, " | |
123 "but no dataset for weights was provided!") | |
124 main_est.load_weights(infile_weights) | |
125 | |
126 # handle scorer, convert to scorer dict | |
127 scoring = params['scoring'] | |
128 scorer = get_scoring(scoring) | |
129 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | |
130 | |
131 if hasattr(estimator, 'evaluate'): | |
132 scores = estimator.evaluate(X_test, y_test=y_test, | |
133 scorer=scorer, | |
134 is_multimetric=True) | |
135 else: | |
136 scores = _score(estimator, X_test, y_test, scorer, | |
137 is_multimetric=True) | |
138 | |
139 # handle output | |
140 for name, score in scores.items(): | |
141 scores[name] = [score] | |
142 df = pd.DataFrame(scores) | |
143 df = df[sorted(df.columns)] | |
144 df.to_csv(path_or_buf=outfile_eval, sep='\t', | |
145 header=True, index=False) | |
146 | |
147 | |
148 if __name__ == '__main__': | |
149 aparser = argparse.ArgumentParser() | |
150 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
151 aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator") | |
152 aparser.add_argument("-w", "--infile_weights", dest="infile_weights") | |
153 aparser.add_argument("-X", "--infile1", dest="infile1") | |
154 aparser.add_argument("-y", "--infile2", dest="infile2") | |
155 aparser.add_argument("-O", "--outfile_eval", dest="outfile_eval") | |
156 args = aparser.parse_args() | |
157 | |
158 main(args.inputs, args.infile_estimator, args.outfile_eval, | |
159 infile_weights=args.infile_weights, infile1=args.infile1, | |
160 infile2=args.infile2) |