Mercurial > repos > bgruening > sklearn_numeric_clustering
comparison keras_train_and_eval.py @ 37:80bb86a40de6 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
author | bgruening |
---|---|
date | Mon, 16 Dec 2019 10:05:23 +0000 |
parents | |
children | 006e27f0a7ef |
comparison
equal
deleted
inserted
replaced
36:836ba896e2be | 37:80bb86a40de6 |
---|---|
1 import argparse | |
2 import joblib | |
3 import json | |
4 import numpy as np | |
5 import os | |
6 import pandas as pd | |
7 import pickle | |
8 import warnings | |
9 from itertools import chain | |
10 from scipy.io import mmread | |
11 from sklearn.pipeline import Pipeline | |
12 from sklearn.metrics.scorer import _check_multimetric_scoring | |
13 from sklearn import model_selection | |
14 from sklearn.model_selection._validation import _score | |
15 from sklearn.model_selection import _search, _validation | |
16 from sklearn.utils import indexable, safe_indexing | |
17 | |
18 from galaxy_ml.externals.selene_sdk.utils import compute_score | |
19 from galaxy_ml.model_validations import train_test_split | |
20 from galaxy_ml.keras_galaxy_models import _predict_generator | |
21 from galaxy_ml.utils import (SafeEval, get_scoring, load_model, | |
22 read_columns, try_get_attr, get_module, | |
23 clean_params, get_main_estimator) | |
24 | |
25 | |
26 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | |
27 setattr(_search, '_fit_and_score', _fit_and_score) | |
28 setattr(_validation, '_fit_and_score', _fit_and_score) | |
29 | |
30 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) | |
31 CACHE_DIR = os.path.join(os.getcwd(), 'cached') | |
32 del os | |
33 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | |
34 'nthread', 'callbacks') | |
35 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | |
36 'CSVLogger', 'None') | |
37 | |
38 | |
39 def _eval_swap_params(params_builder): | |
40 swap_params = {} | |
41 | |
42 for p in params_builder['param_set']: | |
43 swap_value = p['sp_value'].strip() | |
44 if swap_value == '': | |
45 continue | |
46 | |
47 param_name = p['sp_name'] | |
48 if param_name.lower().endswith(NON_SEARCHABLE): | |
49 warnings.warn("Warning: `%s` is not eligible for search and was " | |
50 "omitted!" % param_name) | |
51 continue | |
52 | |
53 if not swap_value.startswith(':'): | |
54 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
55 ev = safe_eval(swap_value) | |
56 else: | |
57 # Have `:` before search list, asks for estimator evaluatio | |
58 safe_eval_es = SafeEval(load_estimators=True) | |
59 swap_value = swap_value[1:].strip() | |
60 # TODO maybe add regular express check | |
61 ev = safe_eval_es(swap_value) | |
62 | |
63 swap_params[param_name] = ev | |
64 | |
65 return swap_params | |
66 | |
67 | |
68 def train_test_split_none(*arrays, **kwargs): | |
69 """extend train_test_split to take None arrays | |
70 and support split by group names. | |
71 """ | |
72 nones = [] | |
73 new_arrays = [] | |
74 for idx, arr in enumerate(arrays): | |
75 if arr is None: | |
76 nones.append(idx) | |
77 else: | |
78 new_arrays.append(arr) | |
79 | |
80 if kwargs['shuffle'] == 'None': | |
81 kwargs['shuffle'] = None | |
82 | |
83 group_names = kwargs.pop('group_names', None) | |
84 | |
85 if group_names is not None and group_names.strip(): | |
86 group_names = [name.strip() for name in | |
87 group_names.split(',')] | |
88 new_arrays = indexable(*new_arrays) | |
89 groups = kwargs['labels'] | |
90 n_samples = new_arrays[0].shape[0] | |
91 index_arr = np.arange(n_samples) | |
92 test = index_arr[np.isin(groups, group_names)] | |
93 train = index_arr[~np.isin(groups, group_names)] | |
94 rval = list(chain.from_iterable( | |
95 (safe_indexing(a, train), | |
96 safe_indexing(a, test)) for a in new_arrays)) | |
97 else: | |
98 rval = train_test_split(*new_arrays, **kwargs) | |
99 | |
100 for pos in nones: | |
101 rval[pos * 2: 2] = [None, None] | |
102 | |
103 return rval | |
104 | |
105 | |
106 def _evaluate(y_true, pred_probas, scorer, is_multimetric=True): | |
107 """ output scores based on input scorer | |
108 | |
109 Parameters | |
110 ---------- | |
111 y_true : array | |
112 True label or target values | |
113 pred_probas : array | |
114 Prediction values, probability for classification problem | |
115 scorer : dict | |
116 dict of `sklearn.metrics.scorer.SCORER` | |
117 is_multimetric : bool, default is True | |
118 """ | |
119 if y_true.ndim == 1 or y_true.shape[-1] == 1: | |
120 pred_probas = pred_probas.ravel() | |
121 pred_labels = (pred_probas > 0.5).astype('int32') | |
122 targets = y_true.ravel().astype('int32') | |
123 if not is_multimetric: | |
124 preds = pred_labels if scorer.__class__.__name__ == \ | |
125 '_PredictScorer' else pred_probas | |
126 score = scorer._score_func(targets, preds, **scorer._kwargs) | |
127 | |
128 return score | |
129 else: | |
130 scores = {} | |
131 for name, one_scorer in scorer.items(): | |
132 preds = pred_labels if one_scorer.__class__.__name__\ | |
133 == '_PredictScorer' else pred_probas | |
134 score = one_scorer._score_func(targets, preds, | |
135 **one_scorer._kwargs) | |
136 scores[name] = score | |
137 | |
138 # TODO: multi-class metrics | |
139 # multi-label | |
140 else: | |
141 pred_labels = (pred_probas > 0.5).astype('int32') | |
142 targets = y_true.astype('int32') | |
143 if not is_multimetric: | |
144 preds = pred_labels if scorer.__class__.__name__ == \ | |
145 '_PredictScorer' else pred_probas | |
146 score, _ = compute_score(preds, targets, | |
147 scorer._score_func) | |
148 return score | |
149 else: | |
150 scores = {} | |
151 for name, one_scorer in scorer.items(): | |
152 preds = pred_labels if one_scorer.__class__.__name__\ | |
153 == '_PredictScorer' else pred_probas | |
154 score, _ = compute_score(preds, targets, | |
155 one_scorer._score_func) | |
156 scores[name] = score | |
157 | |
158 return scores | |
159 | |
160 | |
161 def main(inputs, infile_estimator, infile1, infile2, | |
162 outfile_result, outfile_object=None, | |
163 outfile_weights=None, outfile_y_true=None, | |
164 outfile_y_preds=None, groups=None, | |
165 ref_seq=None, intervals=None, targets=None, | |
166 fasta_path=None): | |
167 """ | |
168 Parameter | |
169 --------- | |
170 inputs : str | |
171 File path to galaxy tool parameter | |
172 | |
173 infile_estimator : str | |
174 File path to estimator | |
175 | |
176 infile1 : str | |
177 File path to dataset containing features | |
178 | |
179 infile2 : str | |
180 File path to dataset containing target values | |
181 | |
182 outfile_result : str | |
183 File path to save the results, either cv_results or test result | |
184 | |
185 outfile_object : str, optional | |
186 File path to save searchCV object | |
187 | |
188 outfile_weights : str, optional | |
189 File path to save deep learning model weights | |
190 | |
191 outfile_y_true : str, optional | |
192 File path to target values for prediction | |
193 | |
194 outfile_y_preds : str, optional | |
195 File path to save deep learning model weights | |
196 | |
197 groups : str | |
198 File path to dataset containing groups labels | |
199 | |
200 ref_seq : str | |
201 File path to dataset containing genome sequence file | |
202 | |
203 intervals : str | |
204 File path to dataset containing interval file | |
205 | |
206 targets : str | |
207 File path to dataset compressed target bed file | |
208 | |
209 fasta_path : str | |
210 File path to dataset containing fasta file | |
211 """ | |
212 warnings.simplefilter('ignore') | |
213 | |
214 with open(inputs, 'r') as param_handler: | |
215 params = json.load(param_handler) | |
216 | |
217 # load estimator | |
218 with open(infile_estimator, 'rb') as estimator_handler: | |
219 estimator = load_model(estimator_handler) | |
220 | |
221 estimator = clean_params(estimator) | |
222 | |
223 # swap hyperparameter | |
224 swapping = params['experiment_schemes']['hyperparams_swapping'] | |
225 swap_params = _eval_swap_params(swapping) | |
226 estimator.set_params(**swap_params) | |
227 | |
228 estimator_params = estimator.get_params() | |
229 | |
230 # store read dataframe object | |
231 loaded_df = {} | |
232 | |
233 input_type = params['input_options']['selected_input'] | |
234 # tabular input | |
235 if input_type == 'tabular': | |
236 header = 'infer' if params['input_options']['header1'] else None | |
237 column_option = (params['input_options']['column_selector_options_1'] | |
238 ['selected_column_selector_option']) | |
239 if column_option in ['by_index_number', 'all_but_by_index_number', | |
240 'by_header_name', 'all_but_by_header_name']: | |
241 c = params['input_options']['column_selector_options_1']['col1'] | |
242 else: | |
243 c = None | |
244 | |
245 df_key = infile1 + repr(header) | |
246 df = pd.read_csv(infile1, sep='\t', header=header, | |
247 parse_dates=True) | |
248 loaded_df[df_key] = df | |
249 | |
250 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
251 # sparse input | |
252 elif input_type == 'sparse': | |
253 X = mmread(open(infile1, 'r')) | |
254 | |
255 # fasta_file input | |
256 elif input_type == 'seq_fasta': | |
257 pyfaidx = get_module('pyfaidx') | |
258 sequences = pyfaidx.Fasta(fasta_path) | |
259 n_seqs = len(sequences.keys()) | |
260 X = np.arange(n_seqs)[:, np.newaxis] | |
261 for param in estimator_params.keys(): | |
262 if param.endswith('fasta_path'): | |
263 estimator.set_params( | |
264 **{param: fasta_path}) | |
265 break | |
266 else: | |
267 raise ValueError( | |
268 "The selected estimator doesn't support " | |
269 "fasta file input! Please consider using " | |
270 "KerasGBatchClassifier with " | |
271 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
272 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
273 "in pipeline!") | |
274 | |
275 elif input_type == 'refseq_and_interval': | |
276 path_params = { | |
277 'data_batch_generator__ref_genome_path': ref_seq, | |
278 'data_batch_generator__intervals_path': intervals, | |
279 'data_batch_generator__target_path': targets | |
280 } | |
281 estimator.set_params(**path_params) | |
282 n_intervals = sum(1 for line in open(intervals)) | |
283 X = np.arange(n_intervals)[:, np.newaxis] | |
284 | |
285 # Get target y | |
286 header = 'infer' if params['input_options']['header2'] else None | |
287 column_option = (params['input_options']['column_selector_options_2'] | |
288 ['selected_column_selector_option2']) | |
289 if column_option in ['by_index_number', 'all_but_by_index_number', | |
290 'by_header_name', 'all_but_by_header_name']: | |
291 c = params['input_options']['column_selector_options_2']['col2'] | |
292 else: | |
293 c = None | |
294 | |
295 df_key = infile2 + repr(header) | |
296 if df_key in loaded_df: | |
297 infile2 = loaded_df[df_key] | |
298 else: | |
299 infile2 = pd.read_csv(infile2, sep='\t', | |
300 header=header, parse_dates=True) | |
301 loaded_df[df_key] = infile2 | |
302 | |
303 y = read_columns( | |
304 infile2, | |
305 c=c, | |
306 c_option=column_option, | |
307 sep='\t', | |
308 header=header, | |
309 parse_dates=True) | |
310 if len(y.shape) == 2 and y.shape[1] == 1: | |
311 y = y.ravel() | |
312 if input_type == 'refseq_and_interval': | |
313 estimator.set_params( | |
314 data_batch_generator__features=y.ravel().tolist()) | |
315 y = None | |
316 # end y | |
317 | |
318 # load groups | |
319 if groups: | |
320 groups_selector = (params['experiment_schemes']['test_split'] | |
321 ['split_algos']).pop('groups_selector') | |
322 | |
323 header = 'infer' if groups_selector['header_g'] else None | |
324 column_option = \ | |
325 (groups_selector['column_selector_options_g'] | |
326 ['selected_column_selector_option_g']) | |
327 if column_option in ['by_index_number', 'all_but_by_index_number', | |
328 'by_header_name', 'all_but_by_header_name']: | |
329 c = groups_selector['column_selector_options_g']['col_g'] | |
330 else: | |
331 c = None | |
332 | |
333 df_key = groups + repr(header) | |
334 if df_key in loaded_df: | |
335 groups = loaded_df[df_key] | |
336 | |
337 groups = read_columns( | |
338 groups, | |
339 c=c, | |
340 c_option=column_option, | |
341 sep='\t', | |
342 header=header, | |
343 parse_dates=True) | |
344 groups = groups.ravel() | |
345 | |
346 # del loaded_df | |
347 del loaded_df | |
348 | |
349 # cache iraps_core fits could increase search speed significantly | |
350 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
351 main_est = get_main_estimator(estimator) | |
352 if main_est.__class__.__name__ == 'IRAPSClassifier': | |
353 main_est.set_params(memory=memory) | |
354 | |
355 # handle scorer, convert to scorer dict | |
356 scoring = params['experiment_schemes']['metrics']['scoring'] | |
357 scorer = get_scoring(scoring) | |
358 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | |
359 | |
360 # handle test (first) split | |
361 test_split_options = (params['experiment_schemes'] | |
362 ['test_split']['split_algos']) | |
363 | |
364 if test_split_options['shuffle'] == 'group': | |
365 test_split_options['labels'] = groups | |
366 if test_split_options['shuffle'] == 'stratified': | |
367 if y is not None: | |
368 test_split_options['labels'] = y | |
369 else: | |
370 raise ValueError("Stratified shuffle split is not " | |
371 "applicable on empty target values!") | |
372 | |
373 X_train, X_test, y_train, y_test, groups_train, groups_test = \ | |
374 train_test_split_none(X, y, groups, **test_split_options) | |
375 | |
376 exp_scheme = params['experiment_schemes']['selected_exp_scheme'] | |
377 | |
378 # handle validation (second) split | |
379 if exp_scheme == 'train_val_test': | |
380 val_split_options = (params['experiment_schemes'] | |
381 ['val_split']['split_algos']) | |
382 | |
383 if val_split_options['shuffle'] == 'group': | |
384 val_split_options['labels'] = groups_train | |
385 if val_split_options['shuffle'] == 'stratified': | |
386 if y_train is not None: | |
387 val_split_options['labels'] = y_train | |
388 else: | |
389 raise ValueError("Stratified shuffle split is not " | |
390 "applicable on empty target values!") | |
391 | |
392 X_train, X_val, y_train, y_val, groups_train, groups_val = \ | |
393 train_test_split_none(X_train, y_train, groups_train, | |
394 **val_split_options) | |
395 | |
396 # train and eval | |
397 if hasattr(estimator, 'validation_data'): | |
398 if exp_scheme == 'train_val_test': | |
399 estimator.fit(X_train, y_train, | |
400 validation_data=(X_val, y_val)) | |
401 else: | |
402 estimator.fit(X_train, y_train, | |
403 validation_data=(X_test, y_test)) | |
404 else: | |
405 estimator.fit(X_train, y_train) | |
406 | |
407 if hasattr(estimator, 'evaluate'): | |
408 steps = estimator.prediction_steps | |
409 batch_size = estimator.batch_size | |
410 generator = estimator.data_generator_.flow(X_test, y=y_test, | |
411 batch_size=batch_size) | |
412 predictions, y_true = _predict_generator(estimator.model_, generator, | |
413 steps=steps) | |
414 scores = _evaluate(y_true, predictions, scorer, is_multimetric=True) | |
415 | |
416 else: | |
417 if hasattr(estimator, 'predict_proba'): | |
418 predictions = estimator.predict_proba(X_test) | |
419 else: | |
420 predictions = estimator.predict(X_test) | |
421 | |
422 y_true = y_test | |
423 scores = _score(estimator, X_test, y_test, scorer, | |
424 is_multimetric=True) | |
425 if outfile_y_true: | |
426 try: | |
427 pd.DataFrame(y_true).to_csv(outfile_y_true, sep='\t', | |
428 index=False) | |
429 pd.DataFrame(predictions).astype(np.float32).to_csv( | |
430 outfile_y_preds, sep='\t', index=False, | |
431 float_format='%g', chunksize=10000) | |
432 except Exception as e: | |
433 print("Error in saving predictions: %s" % e) | |
434 | |
435 # handle output | |
436 for name, score in scores.items(): | |
437 scores[name] = [score] | |
438 df = pd.DataFrame(scores) | |
439 df = df[sorted(df.columns)] | |
440 df.to_csv(path_or_buf=outfile_result, sep='\t', | |
441 header=True, index=False) | |
442 | |
443 memory.clear(warn=False) | |
444 | |
445 if outfile_object: | |
446 main_est = estimator | |
447 if isinstance(estimator, Pipeline): | |
448 main_est = estimator.steps[-1][-1] | |
449 | |
450 if hasattr(main_est, 'model_') \ | |
451 and hasattr(main_est, 'save_weights'): | |
452 if outfile_weights: | |
453 main_est.save_weights(outfile_weights) | |
454 del main_est.model_ | |
455 del main_est.fit_params | |
456 del main_est.model_class_ | |
457 del main_est.validation_data | |
458 if getattr(main_est, 'data_generator_', None): | |
459 del main_est.data_generator_ | |
460 | |
461 with open(outfile_object, 'wb') as output_handler: | |
462 pickle.dump(estimator, output_handler, | |
463 pickle.HIGHEST_PROTOCOL) | |
464 | |
465 | |
466 if __name__ == '__main__': | |
467 aparser = argparse.ArgumentParser() | |
468 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
469 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
470 aparser.add_argument("-X", "--infile1", dest="infile1") | |
471 aparser.add_argument("-y", "--infile2", dest="infile2") | |
472 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
473 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
474 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
475 aparser.add_argument("-l", "--outfile_y_true", dest="outfile_y_true") | |
476 aparser.add_argument("-p", "--outfile_y_preds", dest="outfile_y_preds") | |
477 aparser.add_argument("-g", "--groups", dest="groups") | |
478 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
479 aparser.add_argument("-b", "--intervals", dest="intervals") | |
480 aparser.add_argument("-t", "--targets", dest="targets") | |
481 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
482 args = aparser.parse_args() | |
483 | |
484 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | |
485 args.outfile_result, outfile_object=args.outfile_object, | |
486 outfile_weights=args.outfile_weights, | |
487 outfile_y_true=args.outfile_y_true, | |
488 outfile_y_preds=args.outfile_y_preds, | |
489 groups=args.groups, | |
490 ref_seq=args.ref_seq, intervals=args.intervals, | |
491 targets=args.targets, fasta_path=args.fasta_path) |