Mercurial > repos > bgruening > sklearn_numeric_clustering
comparison test-data/get_params04.tabular @ 30:60d80322e1e9 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit c0a3a186966888e5787335a7628bf0a4382637e7
author | bgruening |
---|---|
date | Tue, 14 May 2019 17:45:57 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
29:c156b85a6389 | 30:60d80322e1e9 |
---|---|
1 Parameter Value | |
2 * memory memory: None | |
3 * steps "steps: [('selectfrommodel', SelectFromModel(estimator=AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, | |
4 learning_rate=1.0, n_estimators=50, random_state=None), | |
5 max_features=None, norm_order=1, prefit=False, threshold=None)), ('linearsvc', LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, | |
6 intercept_scaling=1, loss='squared_hinge', max_iter=1000, | |
7 multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, | |
8 verbose=0))]" | |
9 @ selectfrommodel "selectfrommodel: SelectFromModel(estimator=AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, | |
10 learning_rate=1.0, n_estimators=50, random_state=None), | |
11 max_features=None, norm_order=1, prefit=False, threshold=None)" | |
12 @ linearsvc "linearsvc: LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, | |
13 intercept_scaling=1, loss='squared_hinge', max_iter=1000, | |
14 multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, | |
15 verbose=0)" | |
16 @ selectfrommodel__estimator__algorithm selectfrommodel__estimator__algorithm: 'SAMME.R' | |
17 @ selectfrommodel__estimator__base_estimator selectfrommodel__estimator__base_estimator: None | |
18 @ selectfrommodel__estimator__learning_rate selectfrommodel__estimator__learning_rate: 1.0 | |
19 @ selectfrommodel__estimator__n_estimators selectfrommodel__estimator__n_estimators: 50 | |
20 @ selectfrommodel__estimator__random_state selectfrommodel__estimator__random_state: None | |
21 @ selectfrommodel__estimator "selectfrommodel__estimator: AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, | |
22 learning_rate=1.0, n_estimators=50, random_state=None)" | |
23 @ selectfrommodel__max_features selectfrommodel__max_features: None | |
24 @ selectfrommodel__norm_order selectfrommodel__norm_order: 1 | |
25 @ selectfrommodel__prefit selectfrommodel__prefit: False | |
26 @ selectfrommodel__threshold selectfrommodel__threshold: None | |
27 @ linearsvc__C linearsvc__C: 1.0 | |
28 @ linearsvc__class_weight linearsvc__class_weight: None | |
29 @ linearsvc__dual linearsvc__dual: True | |
30 @ linearsvc__fit_intercept linearsvc__fit_intercept: True | |
31 @ linearsvc__intercept_scaling linearsvc__intercept_scaling: 1 | |
32 @ linearsvc__loss linearsvc__loss: 'squared_hinge' | |
33 @ linearsvc__max_iter linearsvc__max_iter: 1000 | |
34 @ linearsvc__multi_class linearsvc__multi_class: 'ovr' | |
35 @ linearsvc__penalty linearsvc__penalty: 'l2' | |
36 @ linearsvc__random_state linearsvc__random_state: None | |
37 @ linearsvc__tol linearsvc__tol: 0.0001 | |
38 * linearsvc__verbose linearsvc__verbose: 0 | |
39 Note: @, searchable params in searchcv too. |