Mercurial > repos > bgruening > sklearn_numeric_clustering
comparison feature_selectors.py @ 30:60d80322e1e9 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit c0a3a186966888e5787335a7628bf0a4382637e7
author | bgruening |
---|---|
date | Tue, 14 May 2019 17:45:57 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
29:c156b85a6389 | 30:60d80322e1e9 |
---|---|
1 """ | |
2 DyRFE | |
3 DyRFECV | |
4 MyPipeline | |
5 MyimbPipeline | |
6 check_feature_importances | |
7 """ | |
8 import numpy as np | |
9 | |
10 from imblearn import under_sampling, over_sampling, combine | |
11 from imblearn.pipeline import Pipeline as imbPipeline | |
12 from sklearn import (cluster, compose, decomposition, ensemble, | |
13 feature_extraction, feature_selection, | |
14 gaussian_process, kernel_approximation, | |
15 metrics, model_selection, naive_bayes, | |
16 neighbors, pipeline, preprocessing, | |
17 svm, linear_model, tree, discriminant_analysis) | |
18 | |
19 from sklearn.base import BaseEstimator | |
20 from sklearn.base import MetaEstimatorMixin, clone, is_classifier | |
21 from sklearn.feature_selection.rfe import _rfe_single_fit, RFE, RFECV | |
22 from sklearn.model_selection import check_cv | |
23 from sklearn.metrics.scorer import check_scoring | |
24 from sklearn.utils import check_X_y, safe_indexing, safe_sqr | |
25 from sklearn.utils._joblib import Parallel, delayed, effective_n_jobs | |
26 | |
27 | |
28 class DyRFE(RFE): | |
29 """ | |
30 Mainly used with DyRFECV | |
31 | |
32 Parameters | |
33 ---------- | |
34 estimator : object | |
35 A supervised learning estimator with a ``fit`` method that provides | |
36 information about feature importance either through a ``coef_`` | |
37 attribute or through a ``feature_importances_`` attribute. | |
38 n_features_to_select : int or None (default=None) | |
39 The number of features to select. If `None`, half of the features | |
40 are selected. | |
41 step : int, float or list, optional (default=1) | |
42 If greater than or equal to 1, then ``step`` corresponds to the | |
43 (integer) number of features to remove at each iteration. | |
44 If within (0.0, 1.0), then ``step`` corresponds to the percentage | |
45 (rounded down) of features to remove at each iteration. | |
46 If list, a series of steps of features to remove at each iteration. | |
47 Iterations stops when steps finish | |
48 verbose : int, (default=0) | |
49 Controls verbosity of output. | |
50 | |
51 """ | |
52 def __init__(self, estimator, n_features_to_select=None, step=1, | |
53 verbose=0): | |
54 super(DyRFE, self).__init__(estimator, n_features_to_select, | |
55 step, verbose) | |
56 | |
57 def _fit(self, X, y, step_score=None): | |
58 | |
59 if type(self.step) is not list: | |
60 return super(DyRFE, self)._fit(X, y, step_score) | |
61 | |
62 # dynamic step | |
63 X, y = check_X_y(X, y, "csc") | |
64 # Initialization | |
65 n_features = X.shape[1] | |
66 if self.n_features_to_select is None: | |
67 n_features_to_select = n_features // 2 | |
68 else: | |
69 n_features_to_select = self.n_features_to_select | |
70 | |
71 step = [] | |
72 for s in self.step: | |
73 if 0.0 < s < 1.0: | |
74 step.append(int(max(1, s * n_features))) | |
75 else: | |
76 step.append(int(s)) | |
77 if s <= 0: | |
78 raise ValueError("Step must be >0") | |
79 | |
80 support_ = np.ones(n_features, dtype=np.bool) | |
81 ranking_ = np.ones(n_features, dtype=np.int) | |
82 | |
83 if step_score: | |
84 self.scores_ = [] | |
85 | |
86 step_i = 0 | |
87 # Elimination | |
88 while np.sum(support_) > n_features_to_select and step_i < len(step): | |
89 | |
90 # if last step is 1, will keep loop | |
91 if step_i == len(step) - 1 and step[step_i] != 0: | |
92 step.append(step[step_i]) | |
93 | |
94 # Remaining features | |
95 features = np.arange(n_features)[support_] | |
96 | |
97 # Rank the remaining features | |
98 estimator = clone(self.estimator) | |
99 if self.verbose > 0: | |
100 print("Fitting estimator with %d features." % np.sum(support_)) | |
101 | |
102 estimator.fit(X[:, features], y) | |
103 | |
104 # Get coefs | |
105 if hasattr(estimator, 'coef_'): | |
106 coefs = estimator.coef_ | |
107 else: | |
108 coefs = getattr(estimator, 'feature_importances_', None) | |
109 if coefs is None: | |
110 raise RuntimeError('The classifier does not expose ' | |
111 '"coef_" or "feature_importances_" ' | |
112 'attributes') | |
113 | |
114 # Get ranks | |
115 if coefs.ndim > 1: | |
116 ranks = np.argsort(safe_sqr(coefs).sum(axis=0)) | |
117 else: | |
118 ranks = np.argsort(safe_sqr(coefs)) | |
119 | |
120 # for sparse case ranks is matrix | |
121 ranks = np.ravel(ranks) | |
122 | |
123 # Eliminate the worse features | |
124 threshold =\ | |
125 min(step[step_i], np.sum(support_) - n_features_to_select) | |
126 | |
127 # Compute step score on the previous selection iteration | |
128 # because 'estimator' must use features | |
129 # that have not been eliminated yet | |
130 if step_score: | |
131 self.scores_.append(step_score(estimator, features)) | |
132 support_[features[ranks][:threshold]] = False | |
133 ranking_[np.logical_not(support_)] += 1 | |
134 | |
135 step_i += 1 | |
136 | |
137 # Set final attributes | |
138 features = np.arange(n_features)[support_] | |
139 self.estimator_ = clone(self.estimator) | |
140 self.estimator_.fit(X[:, features], y) | |
141 | |
142 # Compute step score when only n_features_to_select features left | |
143 if step_score: | |
144 self.scores_.append(step_score(self.estimator_, features)) | |
145 self.n_features_ = support_.sum() | |
146 self.support_ = support_ | |
147 self.ranking_ = ranking_ | |
148 | |
149 return self | |
150 | |
151 | |
152 class DyRFECV(RFECV, MetaEstimatorMixin): | |
153 """ | |
154 Compared with RFECV, DyRFECV offers flexiable `step` to eleminate | |
155 features, in the format of list, while RFECV supports only fixed number | |
156 of `step`. | |
157 | |
158 Parameters | |
159 ---------- | |
160 estimator : object | |
161 A supervised learning estimator with a ``fit`` method that provides | |
162 information about feature importance either through a ``coef_`` | |
163 attribute or through a ``feature_importances_`` attribute. | |
164 step : int or float, optional (default=1) | |
165 If greater than or equal to 1, then ``step`` corresponds to the | |
166 (integer) number of features to remove at each iteration. | |
167 If within (0.0, 1.0), then ``step`` corresponds to the percentage | |
168 (rounded down) of features to remove at each iteration. | |
169 If list, a series of step to remove at each iteration. iteration stopes | |
170 when finishing all steps | |
171 Note that the last iteration may remove fewer than ``step`` features in | |
172 order to reach ``min_features_to_select``. | |
173 min_features_to_select : int, (default=1) | |
174 The minimum number of features to be selected. This number of features | |
175 will always be scored, even if the difference between the original | |
176 feature count and ``min_features_to_select`` isn't divisible by | |
177 ``step``. | |
178 cv : int, cross-validation generator or an iterable, optional | |
179 Determines the cross-validation splitting strategy. | |
180 Possible inputs for cv are: | |
181 - None, to use the default 3-fold cross-validation, | |
182 - integer, to specify the number of folds. | |
183 - :term:`CV splitter`, | |
184 - An iterable yielding (train, test) splits as arrays of indices. | |
185 For integer/None inputs, if ``y`` is binary or multiclass, | |
186 :class:`sklearn.model_selection.StratifiedKFold` is used. If the | |
187 estimator is a classifier or if ``y`` is neither binary nor multiclass, | |
188 :class:`sklearn.model_selection.KFold` is used. | |
189 Refer :ref:`User Guide <cross_validation>` for the various | |
190 cross-validation strategies that can be used here. | |
191 .. versionchanged:: 0.20 | |
192 ``cv`` default value of None will change from 3-fold to 5-fold | |
193 in v0.22. | |
194 scoring : string, callable or None, optional, (default=None) | |
195 A string (see model evaluation documentation) or | |
196 a scorer callable object / function with signature | |
197 ``scorer(estimator, X, y)``. | |
198 verbose : int, (default=0) | |
199 Controls verbosity of output. | |
200 n_jobs : int or None, optional (default=None) | |
201 Number of cores to run in parallel while fitting across folds. | |
202 ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
203 ``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
204 for more details. | |
205 """ | |
206 def __init__(self, estimator, step=1, min_features_to_select=1, cv='warn', | |
207 scoring=None, verbose=0, n_jobs=None): | |
208 super(DyRFECV, self).__init__( | |
209 estimator, step=step, | |
210 min_features_to_select=min_features_to_select, | |
211 cv=cv, scoring=scoring, verbose=verbose, | |
212 n_jobs=n_jobs) | |
213 | |
214 def fit(self, X, y, groups=None): | |
215 """Fit the RFE model and automatically tune the number of selected | |
216 features. | |
217 Parameters | |
218 ---------- | |
219 X : {array-like, sparse matrix}, shape = [n_samples, n_features] | |
220 Training vector, where `n_samples` is the number of samples and | |
221 `n_features` is the total number of features. | |
222 y : array-like, shape = [n_samples] | |
223 Target values (integers for classification, real numbers for | |
224 regression). | |
225 groups : array-like, shape = [n_samples], optional | |
226 Group labels for the samples used while splitting the dataset into | |
227 train/test set. | |
228 """ | |
229 if type(self.step) is not list: | |
230 return super(DyRFECV, self).fit(X, y, groups) | |
231 | |
232 X, y = check_X_y(X, y, "csr") | |
233 | |
234 # Initialization | |
235 cv = check_cv(self.cv, y, is_classifier(self.estimator)) | |
236 scorer = check_scoring(self.estimator, scoring=self.scoring) | |
237 n_features = X.shape[1] | |
238 | |
239 step = [] | |
240 for s in self.step: | |
241 if 0.0 < s < 1.0: | |
242 step.append(int(max(1, s * n_features))) | |
243 else: | |
244 step.append(int(s)) | |
245 if s <= 0: | |
246 raise ValueError("Step must be >0") | |
247 | |
248 # Build an RFE object, which will evaluate and score each possible | |
249 # feature count, down to self.min_features_to_select | |
250 rfe = DyRFE(estimator=self.estimator, | |
251 n_features_to_select=self.min_features_to_select, | |
252 step=self.step, verbose=self.verbose) | |
253 | |
254 # Determine the number of subsets of features by fitting across | |
255 # the train folds and choosing the "features_to_select" parameter | |
256 # that gives the least averaged error across all folds. | |
257 | |
258 # Note that joblib raises a non-picklable error for bound methods | |
259 # even if n_jobs is set to 1 with the default multiprocessing | |
260 # backend. | |
261 # This branching is done so that to | |
262 # make sure that user code that sets n_jobs to 1 | |
263 # and provides bound methods as scorers is not broken with the | |
264 # addition of n_jobs parameter in version 0.18. | |
265 | |
266 if effective_n_jobs(self.n_jobs) == 1: | |
267 parallel, func = list, _rfe_single_fit | |
268 else: | |
269 parallel = Parallel(n_jobs=self.n_jobs) | |
270 func = delayed(_rfe_single_fit) | |
271 | |
272 scores = parallel( | |
273 func(rfe, self.estimator, X, y, train, test, scorer) | |
274 for train, test in cv.split(X, y, groups)) | |
275 | |
276 scores = np.sum(scores, axis=0) | |
277 diff = int(scores.shape[0]) - len(step) | |
278 if diff > 0: | |
279 step = np.r_[step, [step[-1]] * diff] | |
280 scores_rev = scores[::-1] | |
281 argmax_idx = len(scores) - np.argmax(scores_rev) - 1 | |
282 n_features_to_select = max( | |
283 n_features - sum(step[:argmax_idx]), | |
284 self.min_features_to_select) | |
285 | |
286 # Re-execute an elimination with best_k over the whole set | |
287 rfe = DyRFE(estimator=self.estimator, | |
288 n_features_to_select=n_features_to_select, step=self.step, | |
289 verbose=self.verbose) | |
290 | |
291 rfe.fit(X, y) | |
292 | |
293 # Set final attributes | |
294 self.support_ = rfe.support_ | |
295 self.n_features_ = rfe.n_features_ | |
296 self.ranking_ = rfe.ranking_ | |
297 self.estimator_ = clone(self.estimator) | |
298 self.estimator_.fit(self.transform(X), y) | |
299 | |
300 # Fixing a normalization error, n is equal to get_n_splits(X, y) - 1 | |
301 # here, the scores are normalized by get_n_splits(X, y) | |
302 self.grid_scores_ = scores[::-1] / cv.get_n_splits(X, y, groups) | |
303 return self | |
304 | |
305 | |
306 class MyPipeline(pipeline.Pipeline): | |
307 """ | |
308 Extend pipeline object to have feature_importances_ attribute | |
309 """ | |
310 def fit(self, X, y=None, **fit_params): | |
311 super(MyPipeline, self).fit(X, y, **fit_params) | |
312 estimator = self.steps[-1][-1] | |
313 if hasattr(estimator, 'coef_'): | |
314 coefs = estimator.coef_ | |
315 else: | |
316 coefs = getattr(estimator, 'feature_importances_', None) | |
317 if coefs is None: | |
318 raise RuntimeError('The estimator in the pipeline does not expose ' | |
319 '"coef_" or "feature_importances_" ' | |
320 'attributes') | |
321 self.feature_importances_ = coefs | |
322 return self | |
323 | |
324 | |
325 class MyimbPipeline(imbPipeline): | |
326 """ | |
327 Extend imblance pipeline object to have feature_importances_ attribute | |
328 """ | |
329 def fit(self, X, y=None, **fit_params): | |
330 super(MyimbPipeline, self).fit(X, y, **fit_params) | |
331 estimator = self.steps[-1][-1] | |
332 if hasattr(estimator, 'coef_'): | |
333 coefs = estimator.coef_ | |
334 else: | |
335 coefs = getattr(estimator, 'feature_importances_', None) | |
336 if coefs is None: | |
337 raise RuntimeError('The estimator in the pipeline does not expose ' | |
338 '"coef_" or "feature_importances_" ' | |
339 'attributes') | |
340 self.feature_importances_ = coefs | |
341 return self | |
342 | |
343 | |
344 def check_feature_importances(estimator): | |
345 """ | |
346 For pipeline object which has no feature_importances_ property, | |
347 this function returns the same comfigured pipeline object with | |
348 attached the last estimator's feature_importances_. | |
349 """ | |
350 if estimator.__class__.__module__ == 'sklearn.pipeline': | |
351 pipeline_steps = estimator.get_params()['steps'] | |
352 estimator = MyPipeline(pipeline_steps) | |
353 elif estimator.__class__.__module__ == 'imblearn.pipeline': | |
354 pipeline_steps = estimator.get_params()['steps'] | |
355 estimator = MyimbPipeline(pipeline_steps) | |
356 else: | |
357 return estimator |