Mercurial > repos > bgruening > sklearn_fitted_model_eval
diff fitted_model_eval.xml @ 0:4fc9e02801f9 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
author | bgruening |
---|---|
date | Fri, 01 Nov 2019 16:39:35 -0400 |
parents | |
children | 981c7b89af13 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/fitted_model_eval.xml Fri Nov 01 16:39:35 2019 -0400 @@ -0,0 +1,87 @@ +<tool id="sklearn_fitted_model_eval" name="Evaluate a Fitted Model" version="@VERSION@"> + <description>using a new batch of labeled data</description> + <macros> + <import>main_macros.xml</import> + <import>keras_macros.xml</import> + </macros> + <expand macro="python_requirements"/> + <expand macro="macro_stdio"/> + <version_command>echo "@VERSION@"</version_command> + <command> + <![CDATA[ + export HDF5_USE_FILE_LOCKING='FALSE'; + python '$__tool_directory__/fitted_model_eval.py' + --inputs '$inputs' + --infile_estimator '$infile_estimator' + --outfile_eval '$outfile_eval' + --infile_weights '$infile_weights' + --infile1 '$input_options.infile1' + --infile2 '$input_options.infile2' + ]]> + </command> + <configfiles> + <inputs name="inputs" /> + </configfiles> + <inputs> + <param name="infile_estimator" type="data" format="zip" label="Choose the dataset containing pipeline/estimator object"/> + <param name="infile_weights" type="data" format="h5" optional="true" label="Choose the dataset containing weights for the estimator above" help="Optional. For deep learning only."/> + <expand macro="scoring_selection"/> + <conditional name="input_options"> + <expand macro="data_input_options"/> + <when value="tabular"> + <expand macro="samples_tabular" label1="Dataset containing features:" multiple1="true" multiple2="false"/> + </when> + <when value="sparse"> + <expand macro="sparse_target"/> + </when> + </conditional> + </inputs> + <outputs> + <data format="tabular" name="outfile_eval"/> + </outputs> + <tests> + <test> + <param name="infile_estimator" value="searchCV01" ftype="zip"/> + <conditional name="scoring"> + <param name="primary_scoring" value="r2"/> + </conditional> + <param name="infile1" value="train_test_split_test01.tabular" ftype="tabular"/> + <param name="header1" value="true" /> + <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> + <param name="infile2" value="regression_y_split_test01.tabular" ftype="tabular"/> + <param name="header2" value="true"/> + <param name="col2" value="1"/> + <output name="outfile_eval" file="fitted_model_eval01.tabular"/> + </test> + </tests> + <help> + <![CDATA[ +**What it does** + +Given a fitted estimator and a labeled dataset, this tool outputs the performances of the fitted estimator on the labeled dataset with selected scorers. + +For the estimator, this tool supports fitted sklearn estimators (pickled) and trained deep learning models (model skeleton + weights). For input datasets, it supports the following: + +- tabular + +- sparse + + +**Output** + +A tabular file containing performance scores, +e.g.: + +======== ======== ========= +accuracy f1_macro precision +======== ======== ========= + 0.8613 0.6759 0.7928 +======== ======== ========= + + ]]> + </help> + <expand macro="sklearn_citation"> + <expand macro="keras_citation"/> + <expand macro="selene_citation"/> + </expand> +</tool>