Mercurial > repos > bgruening > sklearn_feature_selection
view feature_selection.xml @ 2:5a06c81f044d draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 79fe42239dcf077b13f85cbcd6c6e30d7e1e4832
author | bgruening |
---|---|
date | Tue, 22 May 2018 19:27:45 -0400 |
parents | 2bbacfaadb5c |
children | 0dc80ab8ec21 |
line wrap: on
line source
<tool id="sklearn_feature_selection" name="Feature Selection" version="@VERSION@.1"> <description>module, including univariate filter selection methods and recursive feature elimination algorithm</description> <macros> <import>main_macros.xml</import> </macros> <expand macro="python_requirements"/> <expand macro="macro_stdio"/> <version_command>echo "@VERSION@"</version_command> <command> <![CDATA[ python "$feature_selection_script" '$inputs' ]]> </command> <configfiles> <inputs name="inputs" /> <configfile name="feature_selection_script"> <![CDATA[ import sys import json import pandas import pickle import numpy as np import sklearn.feature_selection from sklearn import svm, linear_model, ensemble @COLUMNS_FUNCTION@ input_json_path = sys.argv[1] params = json.load(open(input_json_path, "r")) ## Read features features_has_header = params["input_options"]["header1"] input_type = params["input_options"]["selected_input"] if input_type=="tabular": header = 'infer' if features_has_header else None header = 'infer' if params["input_options"]["header1"] else None X, input_df = read_columns( "$input_options.infile1", "$input_options.col1", return_df = True, sep='\t', header=header, parse_dates=True ) else: X = mmread(open("$input_options.infile1", 'r')) ## Read labels header = 'infer' if params["input_options"]["header2"] else None y = read_columns( "$input_options.infile2", "$input_options.col2", sep='\t', header=header, parse_dates=True ) y=y.ravel() ## Create feature selector selector = params["feature_selection_algorithms"]["selected_algorithm"] selector = getattr(sklearn.feature_selection, selector) options = params["feature_selection_algorithms"]["options"] if params['feature_selection_algorithms']['selected_algorithm'] == 'SelectFromModel': if not options['threshold'] or options['threshold'] == 'None': options['threshold'] = None if 'extra_estimator' in params['feature_selection_algorithms'] and params['feature_selection_algorithms']['extra_estimator']['has_estimator'] == 'no_load': fitted_estimator = pickle.load(open("params['feature_selection_algorithms']['extra_estimator']['fitted_estimator']", 'r')) new_selector = selector(fitted_estimator, prefit=True, **options) else: estimator=params["feature_selection_algorithms"]["estimator"] if params["feature_selection_algorithms"]["extra_estimator"]["has_estimator"]=='no': estimator=params["feature_selection_algorithms"]["extra_estimator"]["new_estimator"] estimator=eval(estimator.replace('__dq__', '"').replace("__sq__","'")) new_selector = selector(estimator, **options) new_selector.fit(X, y) elif params['feature_selection_algorithms']['selected_algorithm'] in ['RFE', 'RFECV']: if 'scoring' in options and (not options['scoring'] or options['scoring'] == 'None'): options['scoring'] = None estimator=params["feature_selection_algorithms"]["estimator"] if params["feature_selection_algorithms"]["extra_estimator"]["has_estimator"]=='no': estimator=params["feature_selection_algorithms"]["extra_estimator"]["new_estimator"] estimator=eval(estimator.replace('__dq__', '"').replace("__sq__","'")) new_selector = selector(estimator, **options) new_selector.fit(X, y) elif params['feature_selection_algorithms']['selected_algorithm'] == "VarianceThreshold": new_selector = selector(**options) new_selector.fit(X, y) else: score_func = params["feature_selection_algorithms"]["score_func"] score_func = getattr(sklearn.feature_selection, score_func) new_selector = selector(score_func, **options) new_selector.fit(X, y) ## Transform to select features selected_names = None if "$select_methods.selected_method" == "fit_transform": res = new_selector.transform(X) if features_has_header: selected_names = input_df.columns[new_selector.get_support(indices=True)] else: res = new_selector.get_support(params["select_methods"]["indices"]) res = pandas.DataFrame(res, columns = selected_names) res.to_csv(path_or_buf="$outfile", sep='\t', index=False) ]]> </configfile> </configfiles> <inputs> <expand macro="feature_selection_all" /> <expand macro="feature_selection_methods" /> <expand macro="sl_mixed_input"/> </inputs> <outputs> <data format="tabular" name="outfile"/> </outputs> <tests> <test> <param name="selected_algorithm" value="SelectFromModel"/> <param name="has_estimator" value="no"/> <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result01"/> </test> <test> <param name="selected_algorithm" value="GenericUnivariateSelect"/> <param name="param" value="20"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result02"/> </test> <test> <param name="selected_algorithm" value="SelectPercentile"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result03"/> </test> <test> <param name="selected_algorithm" value="SelectKBest"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result04"/> </test> <test> <param name="selected_algorithm" value="SelectFpr"/> <param name="alpha" value="0.05"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result05"/> </test> <test> <param name="selected_algorithm" value="SelectFdr"/> <param name="alpha" value="0.05"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result06"/> </test> <test> <param name="selected_algorithm" value="SelectFwe"/> <param name="alpha" value="0.05"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result07"/> </test> <test> <param name="selected_algorithm" value="RFE"/> <param name="has_estimator" value="no"/> <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result08"/> </test> <test> <param name="selected_algorithm" value="RFECV"/> <param name="has_estimator" value="no"/> <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result09"/> </test> <test> <param name="selected_algorithm" value="VarianceThreshold"/> <param name="threshold" value="0.1"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result10"/> </test> </tests> <help> <![CDATA[ **What it does** This tool provides several loss, score, and utility functions to measure classification performance. Some metrics might require probability estimates of the positive class, confidence values, or binary decisions values. This tool is based on sklearn.metrics package. For information about classification metric functions and their parameter settings please refer to `Scikit-learn classification metrics`_. .. _`Scikit-learn classification metrics`: http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics ]]> </help> <expand macro="sklearn_citation"/> </tool>