view feature_selection.xml @ 7:214c4c1f91ec draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5d71c93a3dd804b1469852240a86021ab9130364
author bgruening
date Mon, 09 Jul 2018 14:27:47 -0400
parents dc574d9778bd
children 7701da597d1d
line wrap: on
line source

<tool id="sklearn_feature_selection" name="Feature Selection" version="@VERSION@.1">
    <description>module, including univariate filter selection methods and recursive feature elimination algorithm</description>
    <macros>
        <import>main_macros.xml</import>
    </macros>
    <expand macro="python_requirements"/>
    <expand macro="macro_stdio"/>
    <version_command>echo "@VERSION@"</version_command>
    <command>
        <![CDATA[
        python "$feature_selection_script" '$inputs'
        ]]>
    </command>
    <configfiles>
        <inputs name="inputs" />
        <configfile name="feature_selection_script">
            <![CDATA[
import sys
import json
import pandas
import pickle
import numpy as np
import sklearn.feature_selection
from sklearn import svm, linear_model, ensemble

@COLUMNS_FUNCTION@

@FEATURE_SELECTOR_FUNCTION@

input_json_path = sys.argv[1]
params = json.load(open(input_json_path, "r"))

## Read features
features_has_header = params["input_options"]["header1"]
input_type = params["input_options"]["selected_input"]
if input_type=="tabular":
    header = 'infer' if features_has_header else None
    column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"]
    if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]:
        c = params["input_options"]["column_selector_options_1"]["col1"]
    else:
        c = None
    X, input_df = read_columns(
            "$input_options.infile1",
            c = c,
            c_option = column_option,
            return_df = True,
            sep='\t',
            header=header,
            parse_dates=True
    )
else:
    X = mmread(open("$input_options.infile1", 'r'))

## Read labels
header = 'infer' if params["input_options"]["header2"] else None
column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"]
if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]:
    c = params["input_options"]["column_selector_options_2"]["col2"]
else:
    c = None
y = read_columns(
        "$input_options.infile2",
        c = c,
        c_option = column_option,
        sep='\t',
        header=header,
        parse_dates=True
)
y=y.ravel()

## Create feature selector
new_selector = feature_selector(params['feature_selection_algorithms'])
if params['feature_selection_algorithms']['selected_algorithm'] != 'SelectFromModel' or \
        'extra_estimator' not in params['feature_selection_algorithms'] or \
        params['feature_selection_algorithms']['extra_estimator']['has_estimator'] != 'no_load' :
    new_selector.fit(X, y)

## Transform to select features
selected_names = None
if "$select_methods.selected_method" == "fit_transform":
    res = new_selector.transform(X)
    if features_has_header:
        selected_names = input_df.columns[new_selector.get_support(indices=True)]
else:
    res = new_selector.get_support(params["select_methods"]["indices"])

res = pandas.DataFrame(res, columns = selected_names)
res.to_csv(path_or_buf="$outfile", sep='\t', index=False)


            ]]>
        </configfile>
    </configfiles>
    <inputs>
        <expand macro="feature_selection_all" />
        <expand macro="feature_selection_methods" />
        <expand macro="sl_mixed_input"/>
    </inputs>
    <outputs>
        <data format="tabular" name="outfile"/>
    </outputs>
    <tests>
        <test>
            <param name="selected_algorithm" value="SelectFromModel"/>
            <param name="has_estimator" value="no"/>
            <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result01"/>
        </test>
        <test>
            <param name="selected_algorithm" value="GenericUnivariateSelect"/>
            <param name="param" value="20"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result02"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectPercentile"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result03"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectKBest"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result04"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFpr"/>
            <param name="alpha" value="0.05"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result05"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFdr"/>
            <param name="alpha" value="0.05"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result06"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFwe"/>
            <param name="alpha" value="0.05"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result07"/>
        </test>
        <test>
            <param name="selected_algorithm" value="RFE"/>
            <param name="has_estimator" value="no"/>
            <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result08"/>
        </test>
        <test>
            <param name="selected_algorithm" value="RFECV"/>
            <param name="has_estimator" value="no"/>
            <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result09"/>
        </test>
        <test>
            <param name="selected_algorithm" value="VarianceThreshold"/>
            <param name="threshold" value="0.1"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result10"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectKBest"/>
            <param name="k" value="3"/>
            <param name="infile1" value="test3.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="selected_column_selector_option" value="all_but_by_header_name"/>
            <param name="col1" value="target"/>
            <param name="infile2" value="test3.tabular" ftype="tabular"/>
            <param name="header2" value="True"/>
            <param name="selected_column_selector_option2" value="by_header_name"/>
            <param name="col2" value="target"/>
            <output name="outfile" file="feature_selection_result11"/>
        </test>
    </tests>
    <help>
        <![CDATA[
**What it does**
This tool provides several loss, score, and utility functions to measure classification performance. Some metrics might require probability estimates of the positive class, confidence values, or binary decisions values. This tool is based on
sklearn.metrics package.
For information about classification metric functions and their parameter settings please refer to `Scikit-learn classification metrics`_.

.. _`Scikit-learn classification metrics`: http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
        ]]>
    </help>
    <expand macro="sklearn_citation"/>
</tool>