Mercurial > repos > bgruening > sklearn_feature_selection
view feature_selection.xml @ 7:214c4c1f91ec draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5d71c93a3dd804b1469852240a86021ab9130364
author | bgruening |
---|---|
date | Mon, 09 Jul 2018 14:27:47 -0400 |
parents | dc574d9778bd |
children | 7701da597d1d |
line wrap: on
line source
<tool id="sklearn_feature_selection" name="Feature Selection" version="@VERSION@.1"> <description>module, including univariate filter selection methods and recursive feature elimination algorithm</description> <macros> <import>main_macros.xml</import> </macros> <expand macro="python_requirements"/> <expand macro="macro_stdio"/> <version_command>echo "@VERSION@"</version_command> <command> <![CDATA[ python "$feature_selection_script" '$inputs' ]]> </command> <configfiles> <inputs name="inputs" /> <configfile name="feature_selection_script"> <![CDATA[ import sys import json import pandas import pickle import numpy as np import sklearn.feature_selection from sklearn import svm, linear_model, ensemble @COLUMNS_FUNCTION@ @FEATURE_SELECTOR_FUNCTION@ input_json_path = sys.argv[1] params = json.load(open(input_json_path, "r")) ## Read features features_has_header = params["input_options"]["header1"] input_type = params["input_options"]["selected_input"] if input_type=="tabular": header = 'infer' if features_has_header else None column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: c = params["input_options"]["column_selector_options_1"]["col1"] else: c = None X, input_df = read_columns( "$input_options.infile1", c = c, c_option = column_option, return_df = True, sep='\t', header=header, parse_dates=True ) else: X = mmread(open("$input_options.infile1", 'r')) ## Read labels header = 'infer' if params["input_options"]["header2"] else None column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: c = params["input_options"]["column_selector_options_2"]["col2"] else: c = None y = read_columns( "$input_options.infile2", c = c, c_option = column_option, sep='\t', header=header, parse_dates=True ) y=y.ravel() ## Create feature selector new_selector = feature_selector(params['feature_selection_algorithms']) if params['feature_selection_algorithms']['selected_algorithm'] != 'SelectFromModel' or \ 'extra_estimator' not in params['feature_selection_algorithms'] or \ params['feature_selection_algorithms']['extra_estimator']['has_estimator'] != 'no_load' : new_selector.fit(X, y) ## Transform to select features selected_names = None if "$select_methods.selected_method" == "fit_transform": res = new_selector.transform(X) if features_has_header: selected_names = input_df.columns[new_selector.get_support(indices=True)] else: res = new_selector.get_support(params["select_methods"]["indices"]) res = pandas.DataFrame(res, columns = selected_names) res.to_csv(path_or_buf="$outfile", sep='\t', index=False) ]]> </configfile> </configfiles> <inputs> <expand macro="feature_selection_all" /> <expand macro="feature_selection_methods" /> <expand macro="sl_mixed_input"/> </inputs> <outputs> <data format="tabular" name="outfile"/> </outputs> <tests> <test> <param name="selected_algorithm" value="SelectFromModel"/> <param name="has_estimator" value="no"/> <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result01"/> </test> <test> <param name="selected_algorithm" value="GenericUnivariateSelect"/> <param name="param" value="20"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result02"/> </test> <test> <param name="selected_algorithm" value="SelectPercentile"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result03"/> </test> <test> <param name="selected_algorithm" value="SelectKBest"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result04"/> </test> <test> <param name="selected_algorithm" value="SelectFpr"/> <param name="alpha" value="0.05"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result05"/> </test> <test> <param name="selected_algorithm" value="SelectFdr"/> <param name="alpha" value="0.05"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result06"/> </test> <test> <param name="selected_algorithm" value="SelectFwe"/> <param name="alpha" value="0.05"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result07"/> </test> <test> <param name="selected_algorithm" value="RFE"/> <param name="has_estimator" value="no"/> <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result08"/> </test> <test> <param name="selected_algorithm" value="RFECV"/> <param name="has_estimator" value="no"/> <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result09"/> </test> <test> <param name="selected_algorithm" value="VarianceThreshold"/> <param name="threshold" value="0.1"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result10"/> </test> <test> <param name="selected_algorithm" value="SelectKBest"/> <param name="k" value="3"/> <param name="infile1" value="test3.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="selected_column_selector_option" value="all_but_by_header_name"/> <param name="col1" value="target"/> <param name="infile2" value="test3.tabular" ftype="tabular"/> <param name="header2" value="True"/> <param name="selected_column_selector_option2" value="by_header_name"/> <param name="col2" value="target"/> <output name="outfile" file="feature_selection_result11"/> </test> </tests> <help> <![CDATA[ **What it does** This tool provides several loss, score, and utility functions to measure classification performance. Some metrics might require probability estimates of the positive class, confidence values, or binary decisions values. This tool is based on sklearn.metrics package. For information about classification metric functions and their parameter settings please refer to `Scikit-learn classification metrics`_. .. _`Scikit-learn classification metrics`: http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics ]]> </help> <expand macro="sklearn_citation"/> </tool>