comparison ensemble.xml @ 28:9eaf13ccab4d draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit c0a3a186966888e5787335a7628bf0a4382637e7
author bgruening
date Tue, 14 May 2019 17:48:44 -0400
parents 5af731ab6995
children b76516a55138
comparison
equal deleted inserted replaced
27:5af731ab6995 28:9eaf13ccab4d
12 </command> 12 </command>
13 <configfiles> 13 <configfiles>
14 <inputs name="inputs"/> 14 <inputs name="inputs"/>
15 <configfile name="ensemble_script"> 15 <configfile name="ensemble_script">
16 <![CDATA[ 16 <![CDATA[
17 import sys
18 import os
19 import json 17 import json
20 import numpy as np 18 import numpy as np
19 import pandas
20 import pickle
21 from scipy.io import mmread
21 import sklearn.ensemble 22 import sklearn.ensemble
22 import pandas 23 import sys
23 from scipy.io import mmread 24
24 25 sys.path.insert(0, '$__tool_directory__')
25 with open("$__tool_directory__/sk_whitelist.json", "r") as f: 26 from utils import load_model, get_X_y
26 sk_whitelist = json.load(f) 27
27 exec(open("$__tool_directory__/utils.py").read(), globals()) 28 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1))
28 29
29 # Get inputs, outputs. 30 # Get inputs, outputs.
30 input_json_path = sys.argv[1] 31 input_json_path = sys.argv[1]
31 with open(input_json_path, "r") as param_handler: 32 with open(input_json_path, "r") as param_handler:
32 params = json.load(param_handler) 33 params = json.load(param_handler)