Mercurial > repos > bgruening > sklearn_data_preprocess
changeset 1:10d11b35b2fd draft
planemo upload for repository https://github.com/bgruening/galaxytools/tools/sklearn commit a9f28163f0d2e808e49c43a6df5a040706e79991
author | bgruening |
---|---|
date | Thu, 23 Jun 2016 15:26:15 -0400 |
parents | 12b2bef577d0 |
children | 43075be4044b |
files | main_macros.xml test-data/accuracy_score.txt test-data/auc.txt test-data/average_precision_score.txt test-data/brier_score_loss.txt test-data/classification_report.txt test-data/confusion_matrix.txt test-data/f1_score.txt test-data/fbeta_score.txt test-data/hamming_loss.txt test-data/hinge_loss.txt test-data/jaccard_similarity_score.txt test-data/log_loss.txt test-data/matthews_corrcoef.txt test-data/precision_recall_curve.txt test-data/precision_recall_fscore_support.txt test-data/precision_score.txt test-data/recall_score.txt test-data/roc_auc_score.txt test-data/roc_curve.txt test-data/y.tabular test-data/zero_one_loss.txt |
diffstat | 22 files changed, 137 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/main_macros.xml Fri Jun 03 13:56:11 2016 -0400 +++ b/main_macros.xml Thu Jun 23 15:26:15 2016 -0400 @@ -1,6 +1,16 @@ <macros> <token name="@VERSION@">0.9</token> + <token name="@COLUMNS_FUNCTION@"> +def columns(f,c): + data = pandas.read_csv(f, sep='\t', header=None, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False) + cols = c.split (',') + cols = map(int, cols) + cols = list(map(lambda x: x - 1, cols)) + y = data.iloc[:,cols].values + return y + </token> + <xml name="python_requirements"> <requirements> <requirement type="package" version="0.2.1b">eden</requirement> @@ -219,12 +229,12 @@ </xml> <xml name="average"> - <param argument="average" type="select" optional="True" label="Averaging type" help=" "> - <option value="binary" selected="true" help="Only report results for the class specified by pos_label. Applicable only on binary classification.">binary</option> + <param argument="average" type="select" optional="true" label="Averaging type" help=" "> <option value="micro" help="Calculate metrics globally by counting the total true positives, false negatives and false positives.">micro</option> <option value="samples" help="Calculate metrics for each instance, and find their average (only meaningful for multilabel).">samples</option> <!--option value="macro" help=""></option--> <!--option value="weighted" help=""></option--> + <yield/> </param> </xml> @@ -248,6 +258,43 @@ <yield/> </xml> + + <xml name="clf_inputs_extended" token_label1=" " token_label2=" " token_multiple="False"> + <conditional name="true_columns"> + <param name="selected_input1" type="select" label="Select the input type of true labels dataset:"> + <option value="tabular" selected="true">Tabular</option> + <option value="sparse">Sparse</option> + </param> + <when value="tabular"> + <param name="infile1" type="data" label="@LABEL1@"/> + <param name="col1" type="data_column" data_ref="infile1" label="Select the target column:"/> + </when> + <when value="sparse"> + <param name="infile1" type="data" format="txt" label="@LABEL1@"/> + </when> + </conditional> + <conditional name="predicted_columns"> + <param name="selected_input2" type="select" label="Select the input type of predicted labels dataset:"> + <option value="tabular" selected="true">Tabular</option> + <option value="sparse">Sparse</option> + </param> + <when value="tabular"> + <param name="infile2" type="data" label="@LABEL2@"/> + <param name="col2" multiple="@MULTIPLE@" type="data_column" data_ref="infile2" label="Select target column(s):"/> + </when> + <when value="sparse"> + <param name="infile2" type="data" format="txt" label="@LABEL1@"/> + </when> + </conditional> + </xml> + + <xml name="clf_inputs" token_label1="Dataset containing true labels (tabular):" token_label2="Dataset containing predicted values (tabular):" token_multiple1="False" token_multiple="False"> + <param name="infile1" type="data" format="tabular" label="@LABEL1@"/> + <param name="col1" multiple="@MULTIPLE1@" type="data_column" data_ref="infile1" label="Select the target column:"/> + <param name="infile2" type="data" format="tabular" label="@LABEL2@"/> + <param name="col2" multiple="@MULTIPLE@" type="data_column" data_ref="infile2" label="Select target column(s):"/> + </xml> + <xml name="multiple_input" token_name="input_files" token_max_num="10" token_format="txt" token_label="Sparse matrix file (.mtx, .txt)" token_help_text="Specify a sparse matrix file in .txt format."> <repeat name="@NAME@" min="1" max="@MAX_NUM@" title="Select input file(s):"> <param name="input" type="data" format="@FORMAT@" label="@LABEL@" help="@HELP_TEXT@"/>
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/accuracy_score.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +accuracy_score : +0.846153846154
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/auc.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +auc : +2.5
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/average_precision_score.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +average_precision_score : +1.0
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/brier_score_loss.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +brier_score_loss : +0.564102564103
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/classification_report.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,9 @@ +classification_report : + precision recall f1-score support + + 0 1.00 1.00 1.00 14 + 1 1.00 0.62 0.77 16 + 2 0.60 1.00 0.75 9 + +avg / total 0.91 0.85 0.85 39 +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/confusion_matrix.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,4 @@ +confusion_matrix : +[[14 0 0] + [ 0 10 6] + [ 0 0 9]]
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/f1_score.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +f1_score : +0.847633136095
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/fbeta_score.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +fbeta_score : +0.847633136095
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/hamming_loss.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +hamming_loss : +0.153846153846
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/hinge_loss.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +hinge_loss : +2.76882271268
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/jaccard_similarity_score.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +jaccard_similarity_score : +0.846153846154
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/log_loss.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +log_loss : +3.72487354027
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/matthews_corrcoef.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +matthews_corrcoef : +1.0
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/precision_recall_curve.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +precision_recall_curve : +(array([ 1., 1.]), array([ 1., 0.]), array([1]))
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/precision_recall_fscore_support.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +precision_recall_fscore_support : +(0.90769230769230769, 0.84615384615384615, 0.8476331360946745, None)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/precision_score.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +precision_score : +0.907692307692
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/recall_score.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +recall_score : +0.846153846154
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/roc_auc_score.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +roc_auc_score : +1.0
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/roc_curve.txt Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,2 @@ +roc_curve : +(array([ 0., 1.]), array([ 1., 1.]), array([1, 0]))
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/y.tabular Thu Jun 23 15:26:15 2016 -0400 @@ -0,0 +1,39 @@ +0 0 0.0 1.0 2.0 0 0 -2.76903910779 -0.777269253713 2.08028572913 +2 2 0.0 0.0 1.0 1 1 -1.46032791667 0.555654963057 -1.54234795893 +1 1 0.0 1.0 0.0 1 1 1.72939677275 -1.3402943146 -7.95375106924 +0 0 1.0 0.0 0.0 0 0 -3.15016545997 0.19568758864 1.40593056786 +2 2 0.0 0.0 1.0 1 1 1.21845859294 -0.677633363546 -6.62421395692 +0 0 1.0 0.0 0.0 0 0 -3.25263252854 -0.908498631085 2.74671790479 +2 2 0.0 0.0 1.0 1 1 1.38291089706 -0.924165117418 -6.87449092795 +0 0 1.0 0.0 0.0 0 0 -1.7423603376 -0.326034812837 -1.12743832183 +1 2 0.0 1.0 0.0 1 1 -1.88141734237 0.0471879612496 -0.990485600884 +1 2 0.0 0.9 0.1 1 1 -1.32547081613 -0.193430743286 -1.66958283068 +1 1 0.0 1.0 0.0 1 1 -2.7799666645 0.485621555351 1.21494093967 +2 2 0.0 0.2 0.8 1 1 -1.60125339649 -0.493901618129 -1.20213785254 +1 2 0.0 1.0 0.0 1 1 -1.86658623206 0.162709340336 -0.691875382528 +1 1 0.0 1.0 0.0 1 1 -1.82214550549 -0.130278514956 -0.836834994045 +1 2 0.0 0.9 0.1 1 1 -1.910728736 -0.0978509403157 -0.469743754594 +1 2 0.0 1.0 0.0 1 1 1.1191441248 -0.350015230403 -6.43122655533 +0 0 1.0 0.0 0.0 0 0 -1.80789829975 -0.267725170783 -0.533251833633 +1 1 0.0 0.9 0.1 1 1 -1.82704375852 0.186802710054 -0.367392242502 +1 1 0.0 0.9 0.1 1 1 1.05683832083 -0.491476736579 -6.10526049159 +0 0 1.0 0.0 0.0 0 0 1.58740583243 -1.32084852823 -7.47140590741 +0 0 1.0 0.0 0.0 0 0 -2.47802529094 -0.500673021108 1.37455405057 +2 2 0.0 0.3 0.7 1 1 -1.85517293032 -0.363363308535 -0.177124010926 +1 1 0.0 0.8 0.2 1 1 0.84169544958 -0.533176028466 -5.7625592501 +0 0 1.0 0.0 0.0 0 0 0.971871089969 -0.336154264594 -5.74291415928 +0 0 1.0 0.0 0.0 0 0 -2.18006328471 -0.33580204472 0.261632810716 +2 2 0.0 0.2 0.8 1 1 1.62753221054 -1.0437871236 -7.15189570944 +0 0 1.0 0.0 0.0 0 0 0.982418549211 -1.02370887933 -6.10073429813 +0 0 1.0 0.0 0.0 0 0 -1.51375235626 -0.156051081077 -1.37297970696 +1 1 0.0 1.0 0.0 1 1 -1.05517039337 0.171153321655 -1.66261211523 +1 1 0.0 1.0 0.0 1 1 1.05117238483 -0.819727602718 -6.16276877471 +0 0 1.0 0.0 0.0 0 0 -2.60008493281 -0.303483971372 0.937773514338 +2 2 0.0 0.0 1.0 1 1 -1.89873152969 -0.370955554274 0.0400346749524 +1 1 0.0 0.8 0.2 1 1 1.30185976049 -0.750494764082 -6.91956219185 +0 0 1.0 0.0 0.0 0 0 -2.20545858405 -0.462493064934 0.374957060793 +2 2 0.0 0.3 0.7 1 1 -2.97088391755 -0.384323906096 1.93410852068 +2 2 0.0 0.0 1.0 1 1 -1.52001848153 -0.275207915229 -0.625142611926 +1 1 0.0 1.0 0.0 1 1 1.32168915538 -0.986903615337 -7.22461895473 +0 0 1.0 0.0 0.0 0 0 -2.42938278814 0.0312031758068 0.740031884365 +1 2 0.0 0.0 1.0 1 1 -1.52001848153 -0.370955554274 0.937773514338