Mercurial > repos > bgruening > sklearn_build_pipeline
comparison pipeline.xml @ 7:1187a20b7e2d draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 57f4407e278a615f47a377a3328782b1d8e0b54d
author | bgruening |
---|---|
date | Sun, 30 Dec 2018 01:35:45 -0500 |
parents | c2bd4fdba005 |
children | 0be40b86763f |
comparison
equal
deleted
inserted
replaced
6:c2bd4fdba005 | 7:1187a20b7e2d |
---|---|
3 <macros> | 3 <macros> |
4 <import>main_macros.xml</import> | 4 <import>main_macros.xml</import> |
5 </macros> | 5 </macros> |
6 <expand macro="python_requirements"> | 6 <expand macro="python_requirements"> |
7 <requirement type="package" version="0.6">skrebate</requirement> | 7 <requirement type="package" version="0.6">skrebate</requirement> |
8 <requirement type="package" version="0.4.2">imbalanced-learn</requirement> | |
8 </expand> | 9 </expand> |
9 <expand macro="macro_stdio"/> | 10 <expand macro="macro_stdio"/> |
10 <version_command>echo "@VERSION@"</version_command> | 11 <version_command>echo "@VERSION@"</version_command> |
11 <command> | 12 <command> |
12 <![CDATA[ | 13 <![CDATA[ |
15 </command> | 16 </command> |
16 <configfiles> | 17 <configfiles> |
17 <inputs name="inputs" /> | 18 <inputs name="inputs" /> |
18 <configfile name="sklearn_pipeline_script"> | 19 <configfile name="sklearn_pipeline_script"> |
19 <![CDATA[ | 20 <![CDATA[ |
20 import sys | |
21 import os | |
22 import json | 21 import json |
23 import pprint | 22 import pprint |
24 import skrebate | 23 import skrebate |
24 import imblearn | |
25 from imblearn import under_sampling, over_sampling, combine | |
26 from imblearn.pipeline import Pipeline as imbPipeline | |
25 from sklearn import (preprocessing, svm, linear_model, ensemble, naive_bayes, | 27 from sklearn import (preprocessing, svm, linear_model, ensemble, naive_bayes, |
26 tree, neighbors, decomposition, kernel_approximation, cluster) | 28 tree, neighbors, decomposition, kernel_approximation, cluster) |
27 from sklearn.pipeline import Pipeline | 29 from sklearn.pipeline import Pipeline |
28 | 30 |
29 exec(open("$__tool_directory__/utils.py").read(), globals()) | 31 with open('$__tool_directory__/sk_whitelist.json', 'r') as f: |
32 sk_whitelist = json.load(f) | |
33 exec(open('$__tool_directory__/utils.py').read(), globals()) | |
34 | |
35 warnings.filterwarnings('ignore') | |
30 | 36 |
31 safe_eval = SafeEval() | 37 safe_eval = SafeEval() |
32 | 38 |
33 input_json_path = sys.argv[1] | 39 input_json_path = sys.argv[1] |
34 with open(input_json_path, "r") as param_handler: | 40 with open(input_json_path, 'r') as param_handler: |
35 params = json.load(param_handler) | 41 params = json.load(param_handler) |
36 | 42 |
43 #if $final_estimator.estimator_selector.selected_module == 'customer_estimator': | |
44 params['final_estimator']['estimator_selector']['c_estimator'] =\ | |
45 '$final_estimator.estimator_selector.c_estimator' | |
46 #end if | |
47 | |
37 pipeline_steps = [] | 48 pipeline_steps = [] |
38 | 49 |
39 def get_component(input_json, check_none=False): | 50 def get_component(input_json, check_none=False): |
51 is_imblearn = False | |
40 if input_json['component_type'] == 'None': | 52 if input_json['component_type'] == 'None': |
41 if not check_none: | 53 if not check_none: |
42 return | 54 return None, False |
43 else: | 55 else: |
44 sys.exit("The pre-processing component type can't be None when the number of components is greater than 1.") | 56 sys.exit("The pre-processing component type can't be None when the number of components is greater than 1.") |
45 if input_json['component_type'] == 'pre_processor': | 57 if input_json['component_type'] == 'pre_processor': |
46 preprocessor = input_json["pre_processors"]["selected_pre_processor"] | 58 preprocessor = input_json['pre_processors']['selected_pre_processor'] |
47 pre_processor_options = input_json["pre_processors"]["options"] | 59 pre_processor_options = input_json['pre_processors']['options'] |
48 my_class = getattr(preprocessing, preprocessor) | 60 my_class = getattr(preprocessing, preprocessor) |
49 obj = my_class(**pre_processor_options) | 61 obj = my_class(**pre_processor_options) |
50 elif input_json['component_type'] == 'feature_selection': | 62 elif input_json['component_type'] == 'feature_selection': |
51 obj = feature_selector(input_json['fs_algorithm_selector']) | 63 obj = feature_selector(input_json['fs_algorithm_selector']) |
52 elif input_json['component_type'] == 'decomposition': | 64 elif input_json['component_type'] == 'decomposition': |
53 algorithm = input_json['matrix_decomposition_selector']['select_algorithm'] | 65 algorithm = input_json['matrix_decomposition_selector']['select_algorithm'] |
54 obj = getattr(decomposition, algorithm)() | 66 obj = getattr(decomposition, algorithm)() |
55 options = input_json['matrix_decomposition_selector']['text_params'].strip() | 67 options = input_json['matrix_decomposition_selector']['text_params'].strip() |
56 if options != "": | 68 if options != '': |
57 options = safe_eval('dict(' + options + ')') | 69 options = safe_eval( 'dict(' + options + ')' ) |
58 obj.set_params(**options) | 70 obj.set_params(**options) |
59 elif input_json['component_type'] == 'kernel_approximation': | 71 elif input_json['component_type'] == 'kernel_approximation': |
60 algorithm = input_json['kernel_approximation_selector']['select_algorithm'] | 72 algorithm = input_json['kernel_approximation_selector']['select_algorithm'] |
61 obj = getattr(kernel_approximation, algorithm)() | 73 obj = getattr(kernel_approximation, algorithm)() |
62 options = input_json['kernel_approximation_selector']['text_params'].strip() | 74 options = input_json['kernel_approximation_selector']['text_params'].strip() |
63 if options != "": | 75 if options != '': |
64 options = safe_eval('dict(' + options + ')') | 76 options = safe_eval( 'dict(' + options + ')' ) |
65 obj.set_params(**options) | 77 obj.set_params(**options) |
66 elif input_json['component_type'] == 'FeatureAgglomeration': | 78 elif input_json['component_type'] == 'FeatureAgglomeration': |
67 algorithm = input_json['FeatureAgglomeration_selector']['select_algorithm'] | 79 algorithm = input_json['FeatureAgglomeration_selector']['select_algorithm'] |
68 obj = getattr(cluster, algorithm)() | 80 obj = getattr(cluster, algorithm)() |
69 options = input_json['FeatureAgglomeration_selector']['text_params'].strip() | 81 options = input_json['FeatureAgglomeration_selector']['text_params'].strip() |
70 if options != "": | 82 if options != '': |
71 options = safe_eval('dict(' + options + ')') | 83 options = safe_eval( 'dict(' + options + ')' ) |
72 obj.set_params(**options) | 84 obj.set_params(**options) |
73 elif input_json['component_type'] == 'skrebate': | 85 elif input_json['component_type'] == 'skrebate': |
74 algorithm = input_json['skrebate_selector']['select_algorithm'] | 86 algorithm = input_json['skrebate_selector']['select_algorithm'] |
75 if algorithm == 'TuRF': | 87 if algorithm == 'TuRF': |
76 obj = getattr(skrebate, algorithm)(core_algorithm='ReliefF') | 88 obj = getattr(skrebate, algorithm)(core_algorithm='ReliefF') |
77 else: | 89 else: |
78 obj = getattr(skrebate, algorithm)() | 90 obj = getattr(skrebate, algorithm)() |
79 options = input_json['skrebate_selector']['text_params'].strip() | 91 options = input_json['skrebate_selector']['text_params'].strip() |
80 if options != "": | 92 if options != '': |
81 options = safe_eval('dict(' + options + ')') | 93 options = safe_eval( 'dict(' + options + ')' ) |
94 obj.set_params(**options) | |
95 elif input_json['component_type'] == 'imblearn': | |
96 is_imblearn = True | |
97 algorithm = input_json['imblearn_selector']['select_algorithm'] | |
98 if algorithm == 'over_sampling.SMOTENC': | |
99 obj = over_sampling.SMOTENC(categorical_features=[]) | |
100 else: | |
101 globals = algorithm.split('.') | |
102 mod, klass = globals[0], globals[1] | |
103 obj = getattr(getattr(imblearn, mod), klass)() | |
104 options = input_json['imblearn_selector']['text_params'].strip() | |
105 if options != '': | |
106 options = safe_eval( 'dict(' + options + ')' ) | |
82 obj.set_params(**options) | 107 obj.set_params(**options) |
83 if 'n_jobs' in obj.get_params(): | 108 if 'n_jobs' in obj.get_params(): |
84 obj.set_params( n_jobs=N_JOBS ) | 109 obj.set_params( n_jobs=N_JOBS ) |
85 return obj | 110 return obj, is_imblearn |
86 | 111 |
112 has_imblearn = False | |
87 if len(params['pipeline_component']) == 1: | 113 if len(params['pipeline_component']) == 1: |
88 step_obj = get_component( params['pipeline_component'][0]['component_selector']) | 114 step_obj, is_imblearn = get_component( params['pipeline_component'][0]['component_selector']) |
89 if step_obj: | 115 if step_obj: |
90 pipeline_steps.append( ('preprocessing_1', step_obj) ) | 116 pipeline_steps.append( ('preprocessing_1', step_obj) ) |
117 if is_imblearn: | |
118 has_imblearn = True | |
91 else: | 119 else: |
92 for i, c in enumerate(params['pipeline_component']): | 120 for i, c in enumerate(params['pipeline_component']): |
93 step_obj = get_component( c['component_selector'], check_none=True ) | 121 step_obj, is_imblearn = get_component( c['component_selector'], check_none=True ) |
94 pipeline_steps.append( ('preprocessing_' + str(i+1), step_obj) ) | 122 pipeline_steps.append( ('preprocessing_' + str(i+1), step_obj) ) |
123 if is_imblearn: | |
124 has_imblearn = True | |
95 | 125 |
96 # Set up final estimator and add to pipeline. | 126 # Set up final estimator and add to pipeline. |
97 estimator_json = params["final_estimator"]['estimator_selector'] | 127 estimator_json = params['final_estimator']['estimator_selector'] |
98 estimator = get_estimator(estimator_json) | 128 if estimator_json['selected_module'] == 'none': |
99 | 129 if len(pipeline_steps) == 0: |
100 pipeline_steps.append( ('estimator', estimator) ) | 130 sys.exit("No pipeline steps specified!") |
101 | 131 else: # turn the last pre-process component to final estimator |
102 pipeline = Pipeline(pipeline_steps) | 132 pipeline_steps[-1] = ('estimator', pipeline_steps[-1][-1]) |
133 else: | |
134 estimator = get_estimator(estimator_json) | |
135 pipeline_steps.append( ('estimator', estimator) ) | |
136 | |
137 if has_imblearn: | |
138 pipeline = imbPipeline(pipeline_steps) | |
139 else: | |
140 pipeline = Pipeline(pipeline_steps) | |
103 pprint.pprint(pipeline.named_steps) | 141 pprint.pprint(pipeline.named_steps) |
104 | 142 |
105 with open("$outfile", 'wb') as out_handler: | 143 with open('$outfile', 'wb') as out_handler: |
106 pickle.dump(pipeline, out_handler, pickle.HIGHEST_PROTOCOL) | 144 pickle.dump(pipeline, out_handler, pickle.HIGHEST_PROTOCOL) |
107 | 145 |
108 ]]> | 146 ]]> |
109 </configfile> | 147 </configfile> |
110 </configfiles> | 148 </configfiles> |
116 <option value="pre_processor">Sklearn Preprocessor</option> | 154 <option value="pre_processor">Sklearn Preprocessor</option> |
117 <option value="feature_selection">Feature Selection</option> | 155 <option value="feature_selection">Feature Selection</option> |
118 <option value="decomposition">Matrix Decomposition</option> | 156 <option value="decomposition">Matrix Decomposition</option> |
119 <option value="kernel_approximation">Kernel Approximation</option> | 157 <option value="kernel_approximation">Kernel Approximation</option> |
120 <option value="FeatureAgglomeration">Agglomerate Features</option> | 158 <option value="FeatureAgglomeration">Agglomerate Features</option> |
121 <option value="skrebate">Skrebate algorithm</option> | 159 <option value="skrebate">SK-rebate feature selection</option> |
160 <option value="imblearn">imbalanced-learn sampling</option> | |
122 </param> | 161 </param> |
123 <when value="None"/> | 162 <when value="None"/> |
124 <when value="pre_processor"> | 163 <when value="pre_processor"> |
125 <conditional name="pre_processors"> | 164 <conditional name="pre_processors"> |
126 <expand macro="sparse_preprocessors_ext" /> | 165 <expand macro="sparse_preprocessors_ext" /> |
127 <expand macro="sparse_preprocessor_options_ext" /> | 166 <expand macro="sparse_preprocessor_options_ext" /> |
128 </conditional> | 167 </conditional> |
129 </when> | 168 </when> |
130 <when value="feature_selection"> | 169 <when value="feature_selection"> |
131 <expand macro="feature_selection_all"> | 170 <expand macro="feature_selection_pipeline"/> |
132 <expand macro="fs_selectfrommodel_no_prefitted"/> | |
133 </expand> | |
134 </when> | 171 </when> |
135 <when value="decomposition"> | 172 <when value="decomposition"> |
136 <expand macro="matrix_decomposition_all"/> | 173 <expand macro="matrix_decomposition_all"/> |
137 </when> | 174 </when> |
138 <when value="kernel_approximation"> | 175 <when value="kernel_approximation"> |
142 <expand macro="FeatureAgglomeration"/> | 179 <expand macro="FeatureAgglomeration"/> |
143 </when> | 180 </when> |
144 <when value="skrebate"> | 181 <when value="skrebate"> |
145 <expand macro="skrebate"/> | 182 <expand macro="skrebate"/> |
146 </when> | 183 </when> |
184 <when value="imblearn"> | |
185 <expand macro="imbalanced_learn_sampling"/> | |
186 </when> | |
147 </conditional> | 187 </conditional> |
148 </repeat> | 188 </repeat> |
149 <section name="final_estimator" title="Final Estimator" expanded="true"> | 189 <section name="final_estimator" title="Final Estimator" expanded="true"> |
150 <expand macro="estimator_selector_all" /> | 190 <conditional name="estimator_selector"> |
191 <param name="selected_module" type="select" label="Choose the module that contains target estimator:" > | |
192 <expand macro="estimator_module_options"> | |
193 <option value="customer_estimator">Load a customer estimator</option> | |
194 <option value="none">none -- The last component of pre-processing step will turn to a final estimator</option> | |
195 </expand> | |
196 </param> | |
197 <expand macro="estimator_suboptions"> | |
198 <when value="customer_estimator"> | |
199 <param name="c_estimator" type="data" format="zip" label="Choose the dataset containing the customer estimator or pipeline:"/> | |
200 </when> | |
201 <when value="none"/> | |
202 </expand> | |
203 </conditional> | |
151 </section> | 204 </section> |
152 </inputs> | 205 </inputs> |
153 <outputs> | 206 <outputs> |
154 <data format="zip" name="outfile"/> | 207 <data format="zip" name="outfile"/> |
155 </outputs> | 208 </outputs> |
173 </conditional> | 226 </conditional> |
174 </repeat> | 227 </repeat> |
175 <param name="selected_module" value="svm"/> | 228 <param name="selected_module" value="svm"/> |
176 <param name="selected_estimator" value="SVR"/> | 229 <param name="selected_estimator" value="SVR"/> |
177 <param name="text_params" value="kernel='linear'"/> | 230 <param name="text_params" value="kernel='linear'"/> |
178 <output name="outfile" file="pipeline01" compare="sim_size" delta="1"/> | 231 <output name="outfile" file="pipeline01" compare="sim_size" delta="5"/> |
179 </test> | 232 </test> |
180 <test> | 233 <test> |
181 <conditional name="component_selector"> | 234 <conditional name="component_selector"> |
182 <param name="component_type" value="pre_processor"/> | 235 <param name="component_type" value="pre_processor"/> |
183 <conditional name="pre_processors"> | 236 <conditional name="pre_processors"> |
184 <param name="selected_pre_processor" value="RobustScaler"/> | 237 <param name="selected_pre_processor" value="RobustScaler"/> |
185 </conditional> | 238 </conditional> |
186 </conditional> | 239 </conditional> |
187 <param name="selected_module" value="linear_model"/> | 240 <param name="selected_module" value="linear_model"/> |
188 <param name="selected_estimator" value="LassoCV"/> | 241 <param name="selected_estimator" value="LassoCV"/> |
189 <output name="outfile" file="pipeline02" compare="sim_size" delta="1"/> | 242 <output name="outfile" file="pipeline02" compare="sim_size" delta="5"/> |
190 </test> | 243 </test> |
191 <test> | 244 <test> |
192 <conditional name="component_selector"> | 245 <conditional name="component_selector"> |
193 <param name="component_type" value="pre_processor"/> | 246 <param name="component_type" value="pre_processor"/> |
194 <conditional name="pre_processors"> | 247 <conditional name="pre_processors"> |
195 <param name="selected_pre_processor" value="RobustScaler"/> | 248 <param name="selected_pre_processor" value="RobustScaler"/> |
196 </conditional> | 249 </conditional> |
197 </conditional> | 250 </conditional> |
198 <param name="selected_module" value="xgboost"/> | 251 <param name="selected_module" value="xgboost"/> |
199 <param name="selected_estimator" value="XGBClassifier"/> | 252 <param name="selected_estimator" value="XGBClassifier"/> |
200 <output name="outfile" file="pipeline03" compare="sim_size" delta="1"/> | 253 <output name="outfile" file="pipeline03" compare="sim_size" delta="5"/> |
201 </test> | 254 </test> |
202 <test> | 255 <test> |
203 <conditional name="component_selector"> | 256 <conditional name="component_selector"> |
204 <param name="component_type" value="feature_selection"/> | 257 <param name="component_type" value="feature_selection"/> |
205 <conditional name="fs_algorithm_selector"> | 258 <conditional name="fs_algorithm_selector"> |
214 </conditional> | 267 </conditional> |
215 <section name="final_estimator"> | 268 <section name="final_estimator"> |
216 <param name="selected_module" value="svm"/> | 269 <param name="selected_module" value="svm"/> |
217 <param name="selected_estimator" value="LinearSVC"/> | 270 <param name="selected_estimator" value="LinearSVC"/> |
218 </section> | 271 </section> |
219 <output name="outfile" file="pipeline04" compare="sim_size" delta="1"/> | 272 <output name="outfile" file="pipeline04" compare="sim_size" delta="5"/> |
220 </test> | 273 </test> |
221 <test> | 274 <test> |
222 <conditional name="component_selector"> | 275 <conditional name="component_selector"> |
223 <param name="component_type" value="None"/> | 276 <param name="component_type" value="None"/> |
224 </conditional> | 277 </conditional> |
225 <param name="selected_module" value="ensemble"/> | 278 <param name="selected_module" value="ensemble"/> |
226 <param name="selected_estimator" value="RandomForestRegressor"/> | 279 <param name="selected_estimator" value="RandomForestRegressor"/> |
227 <param name="text_params" value="n_estimators=100, random_state=42"/> | 280 <param name="text_params" value="n_estimators=100, random_state=42"/> |
228 <output name="outfile" file="pipeline05" compare="sim_size" delta="1"/> | 281 <output name="outfile" file="pipeline05" compare="sim_size" delta="5"/> |
229 </test> | 282 </test> |
230 <test> | 283 <test> |
231 <conditional name="component_selector"> | 284 <conditional name="component_selector"> |
232 <param name="component_type" value="decomposition"/> | 285 <param name="component_type" value="decomposition"/> |
233 <conditional name="matrix_decomposition_selector"> | 286 <conditional name="matrix_decomposition_selector"> |
234 <param name="select_algorithm" value="PCA"/> | 287 <param name="select_algorithm" value="PCA"/> |
235 </conditional> | 288 </conditional> |
236 </conditional> | 289 </conditional> |
237 <param name="selected_module" value="ensemble"/> | 290 <param name="selected_module" value="ensemble"/> |
238 <param name="selected_estimator" value="AdaBoostRegressor"/> | 291 <param name="selected_estimator" value="AdaBoostRegressor"/> |
239 <output name="outfile" file="pipeline06" compare="sim_size" delta="1"/> | 292 <output name="outfile" file="pipeline06" compare="sim_size" delta="5"/> |
240 </test> | 293 </test> |
241 <test> | 294 <test> |
242 <conditional name="component_selector"> | 295 <conditional name="component_selector"> |
243 <param name="component_type" value="kernel_approximation"/> | 296 <param name="component_type" value="kernel_approximation"/> |
244 <conditional name="kernel_approximation_selector"> | 297 <conditional name="kernel_approximation_selector"> |
246 <param name="text_params" value="n_components=10, gamma=2.0"/> | 299 <param name="text_params" value="n_components=10, gamma=2.0"/> |
247 </conditional> | 300 </conditional> |
248 </conditional> | 301 </conditional> |
249 <param name="selected_module" value="ensemble"/> | 302 <param name="selected_module" value="ensemble"/> |
250 <param name="selected_estimator" value="AdaBoostClassifier"/> | 303 <param name="selected_estimator" value="AdaBoostClassifier"/> |
251 <output name="outfile" file="pipeline07" compare="sim_size" delta="1"/> | 304 <output name="outfile" file="pipeline07" compare="sim_size" delta="5"/> |
252 </test> | 305 </test> |
253 <test> | 306 <test> |
254 <conditional name="component_selector"> | 307 <conditional name="component_selector"> |
255 <param name="component_type" value="FeatureAgglomeration"/> | 308 <param name="component_type" value="FeatureAgglomeration"/> |
256 <conditional name="FeatureAgglomeration_selector"> | 309 <conditional name="FeatureAgglomeration_selector"> |
258 <param name="text_params" value="n_clusters=3, affinity='euclidean'"/> | 311 <param name="text_params" value="n_clusters=3, affinity='euclidean'"/> |
259 </conditional> | 312 </conditional> |
260 </conditional> | 313 </conditional> |
261 <param name="selected_module" value="ensemble"/> | 314 <param name="selected_module" value="ensemble"/> |
262 <param name="selected_estimator" value="AdaBoostClassifier"/> | 315 <param name="selected_estimator" value="AdaBoostClassifier"/> |
263 <output name="outfile" file="pipeline08" compare="sim_size" delta="1"/> | 316 <output name="outfile" file="pipeline08" compare="sim_size" delta="5"/> |
264 </test> | 317 </test> |
265 <test> | 318 <test> |
266 <conditional name="component_selector"> | 319 <conditional name="component_selector"> |
267 <param name="component_type" value="skrebate"/> | 320 <param name="component_type" value="skrebate"/> |
268 <conditional name="skrebate_selector"> | 321 <conditional name="skrebate_selector"> |
270 <param name="text_params" value="n_features_to_select=3, n_neighbors=100"/> | 323 <param name="text_params" value="n_features_to_select=3, n_neighbors=100"/> |
271 </conditional> | 324 </conditional> |
272 </conditional> | 325 </conditional> |
273 <param name="selected_module" value="ensemble"/> | 326 <param name="selected_module" value="ensemble"/> |
274 <param name="selected_estimator" value="RandomForestRegressor"/> | 327 <param name="selected_estimator" value="RandomForestRegressor"/> |
275 <output name="outfile" file="pipeline09" compare="sim_size" delta="1"/> | 328 <output name="outfile" file="pipeline09" compare="sim_size" delta="5"/> |
276 </test> | 329 </test> |
277 <test> | 330 <test> |
278 <conditional name="component_selector"> | 331 <conditional name="component_selector"> |
279 <param name="component_type" value="skrebate"/> | 332 <param name="component_type" value="None"/> |
280 <conditional name="skrebate_selector"> | 333 </conditional> |
281 <param name="select_algorithm" value="TuRF"/> | 334 <param name="selected_module" value="ensemble"/> |
282 <param name="text_params" value=""/> | 335 <param name="selected_estimator" value="AdaBoostRegressor"/> |
283 </conditional> | 336 <output name="outfile" file="pipeline10" compare="sim_size" delta="5"/> |
284 </conditional> | 337 </test> |
285 <param name="selected_module" value="ensemble"/> | 338 <test> |
286 <param name="selected_estimator" value="RandomForestRegressor"/> | 339 <conditional name="component_selector"> |
287 <output name="outfile" file="pipeline10" compare="sim_size" delta="1"/> | 340 <param name="component_type" value="imblearn"/> |
341 <conditional name="imblearn_selector"> | |
342 <param name="select_algorithm" value="under_sampling.EditedNearestNeighbours"/> | |
343 </conditional> | |
344 </conditional> | |
345 <param name="selected_module" value="ensemble"/> | |
346 <param name="selected_estimator" value="RandomForestClassifier"/> | |
347 <output name="outfile" file="pipeline11" compare="sim_size" delta="5"/> | |
288 </test> | 348 </test> |
289 <test expect_failure="true"> | 349 <test expect_failure="true"> |
290 <conditional name="component_selector"> | 350 <conditional name="component_selector"> |
291 <param name="component_type" value="None"/> | 351 <param name="component_type" value="None"/> |
292 </conditional> | 352 </conditional> |
293 <param name="selected_module" value="ensemble"/> | 353 <param name="selected_module" value="ensemble"/> |
294 <param name="selected_estimator" value="RandomForestRegressor"/> | 354 <param name="selected_estimator" value="RandomForestRegressor"/> |
295 <param name="text_params" value="n_estimators=__import__('os').system('ls ~')"/> | 355 <param name="text_params" value="n_estimators=__import__('os').system('ls ~')"/> |
356 </test> | |
357 <test> | |
358 <conditional name="component_selector"> | |
359 <param name="component_type" value="feature_selection"/> | |
360 <conditional name="fs_algorithm_selector"> | |
361 <param name="selected_algorithm" value="RFE"/> | |
362 <conditional name="estimator_selector"> | |
363 <param name="selected_module" value="xgboost"/> | |
364 <param name="selected_estimator" value="XGBRegressor"/> | |
365 <param name="text_params" value="random_state=0"/> | |
366 </conditional> | |
367 </conditional> | |
368 </conditional> | |
369 <section name="final_estimator"> | |
370 <conditional name="estimator_selector"> | |
371 <param name="selected_module" value="none"/> | |
372 </conditional> | |
373 </section> | |
374 <output name="outfile" file="pipeline12" compare="sim_size" delta="5"/> | |
296 </test> | 375 </test> |
297 </tests> | 376 </tests> |
298 <help> | 377 <help> |
299 <![CDATA[ | 378 <![CDATA[ |
300 **What it does** | 379 **What it does** |
326 ]]> | 405 ]]> |
327 </help> | 406 </help> |
328 <expand macro="sklearn_citation"> | 407 <expand macro="sklearn_citation"> |
329 <expand macro="skrebate_citation"/> | 408 <expand macro="skrebate_citation"/> |
330 <expand macro="xgboost_citation"/> | 409 <expand macro="xgboost_citation"/> |
410 <expand macro="imblearn_citation"/> | |
331 </expand> | 411 </expand> |
332 </tool> | 412 </tool> |