Mercurial > repos > bgruening > scipy_sparse
view stacking_ensembles.py @ 29:5b8d4d35c605 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit c0a3a186966888e5787335a7628bf0a4382637e7
author | bgruening |
---|---|
date | Tue, 14 May 2019 17:59:56 -0400 |
parents | |
children | 7b9064a068d9 |
line wrap: on
line source
import argparse import json import pandas as pd import pickle import xgboost import warnings from sklearn import (cluster, compose, decomposition, ensemble, feature_extraction, feature_selection, gaussian_process, kernel_approximation, metrics, model_selection, naive_bayes, neighbors, pipeline, preprocessing, svm, linear_model, tree, discriminant_analysis) from sklearn.model_selection._split import check_cv from feature_selectors import (DyRFE, DyRFECV, MyPipeline, MyimbPipeline) from iraps_classifier import (IRAPSCore, IRAPSClassifier, BinarizeTargetClassifier, BinarizeTargetRegressor) from preprocessors import Z_RandomOverSampler from utils import load_model, get_cv, get_estimator, get_search_params from mlxtend.regressor import StackingCVRegressor, StackingRegressor from mlxtend.classifier import StackingCVClassifier, StackingClassifier warnings.filterwarnings('ignore') N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) def main(inputs_path, output_obj, base_paths=None, meta_path=None, outfile_params=None): """ Parameter --------- inputs_path : str File path for Galaxy parameters output_obj : str File path for ensemble estimator ouput base_paths : str File path or paths concatenated by comma. meta_path : str File path outfile_params : str File path for params output """ with open(inputs_path, 'r') as param_handler: params = json.load(param_handler) base_estimators = [] for idx, base_file in enumerate(base_paths.split(',')): if base_file and base_file != 'None': with open(base_file, 'rb') as handler: model = load_model(handler) else: estimator_json = (params['base_est_builder'][idx] ['estimator_selector']) model = get_estimator(estimator_json) base_estimators.append(model) if meta_path: with open(meta_path, 'rb') as f: meta_estimator = load_model(f) else: estimator_json = params['meta_estimator']['estimator_selector'] meta_estimator = get_estimator(estimator_json) options = params['algo_selection']['options'] cv_selector = options.pop('cv_selector', None) if cv_selector: splitter, groups = get_cv(cv_selector) options['cv'] = splitter # set n_jobs options['n_jobs'] = N_JOBS if params['algo_selection']['estimator_type'] == 'StackingCVClassifier': ensemble_estimator = StackingCVClassifier( classifiers=base_estimators, meta_classifier=meta_estimator, **options) elif params['algo_selection']['estimator_type'] == 'StackingClassifier': ensemble_estimator = StackingClassifier( classifiers=base_estimators, meta_classifier=meta_estimator, **options) elif params['algo_selection']['estimator_type'] == 'StackingCVRegressor': ensemble_estimator = StackingCVRegressor( regressors=base_estimators, meta_regressor=meta_estimator, **options) else: ensemble_estimator = StackingRegressor( regressors=base_estimators, meta_regressor=meta_estimator, **options) print(ensemble_estimator) for base_est in base_estimators: print(base_est) with open(output_obj, 'wb') as out_handler: pickle.dump(ensemble_estimator, out_handler, pickle.HIGHEST_PROTOCOL) if params['get_params'] and outfile_params: results = get_search_params(ensemble_estimator) df = pd.DataFrame(results, columns=['', 'Parameter', 'Value']) df.to_csv(outfile_params, sep='\t', index=False) if __name__ == '__main__': aparser = argparse.ArgumentParser() aparser.add_argument("-b", "--bases", dest="bases") aparser.add_argument("-m", "--meta", dest="meta") aparser.add_argument("-i", "--inputs", dest="inputs") aparser.add_argument("-o", "--outfile", dest="outfile") aparser.add_argument("-p", "--outfile_params", dest="outfile_params") args = aparser.parse_args() main(args.inputs, args.outfile, base_paths=args.bases, meta_path=args.meta, outfile_params=args.outfile_params)