Mercurial > repos > bgruening > openms
view PTModel.xml @ 3:ec62782f6c68 draft
Uploaded
author | bgruening |
---|---|
date | Mon, 13 Oct 2014 10:18:22 -0400 |
parents | 3d84209d3178 |
children | 6ead64a594bd |
line wrap: on
line source
<?xml version='1.0' encoding='UTF-8'?> <tool id="PTModel" name="PTModel" version="1.12.0"> <description>Trains a model for the prediction of proteotypic peptides from a training set.</description> <macros> <token name="@EXECUTABLE@">PTModel</token> <import>macros.xml</import> </macros> <expand macro="stdio"/> <expand macro="requirements"/> <command>PTModel -in_positive ${param_in_positive} -in_negative ${param_in_negative} -out ${param_out} -c ${param_c} -svm_type ${param_svm_type} -nu ${param_nu} -kernel_type ${param_kernel_type} -degree ${param_degree} -border_length ${param_border_length} -k_mer_length ${param_k_mer_length} -sigma ${param_sigma} -max_positive_count ${param_max_positive_count} -max_negative_count ${param_max_negative_count} ${param_redundant} ${param_additive_cv} -threads \${GALAXY_SLOTS:-24} ${param_skip_cv} -cv:number_of_runs ${param_number_of_runs} -cv:number_of_partitions ${param_number_of_partitions} -cv:degree_start ${param_degree_start} -cv:degree_step_size ${param_degree_step_size} -cv:degree_stop ${param_degree_stop} -cv:c_start ${param_c_start} -cv:c_step_size ${param_c_step_size} -cv:c_stop ${param_c_stop} -cv:nu_start ${param_nu_start} -cv:nu_step_size ${param_nu_step_size} -cv:nu_stop ${param_nu_stop} -cv:sigma_start ${param_sigma_start} -cv:sigma_step_size ${param_sigma_step_size} -cv:sigma_stop ${param_sigma_stop} </command> <inputs> <param name="param_in_positive" type="data" format="idXML" optional="False" label="input file with positive examples" help="(-in_positive)"/> <param name="param_in_negative" type="data" format="idXML" optional="False" label="input file with negative examples" help="(-in_negative)"/> <param name="param_c" type="float" value="1.0" label="the penalty parameter of the svm" help="(-c)"/> <param name="param_svm_type" type="select" optional="True" value="C_SVC" label="the type of the svm (NU_SVC or C_SVC)" help="(-svm_type)"> <option value="NU_SVC">NU_SVC</option> <option value="C_SVC">C_SVC</option> </param> <param name="param_nu" type="float" min="0.0" max="1.0" optional="True" value="0.5" label="the nu parameter [0..1] of the svm (for nu-SVR)" help="(-nu)"/> <param name="param_kernel_type" type="select" optional="True" value="OLIGO" label="the kernel type of the svm" help="(-kernel_type)"> <option value="LINEAR">LINEAR</option> <option value="RBF">RBF</option> <option value="POLY">POLY</option> <option value="OLIGO">OLIGO</option> </param> <param name="param_degree" type="integer" min="1" optional="True" value="1" label="the degree parameter of the kernel function of the svm (POLY kernel)" help="(-degree)"/> <param name="param_border_length" type="integer" min="1" optional="True" value="22" label="length of the POBK" help="(-border_length)"/> <param name="param_k_mer_length" type="integer" min="1" optional="True" value="1" label="k_mer length of the POBK" help="(-k_mer_length)"/> <param name="param_sigma" type="float" value="5.0" label="sigma of the POBK" help="(-sigma)"/> <param name="param_max_positive_count" type="integer" min="1" optional="True" value="1000" label="quantity of positive samples for training (randomly chosen if smaller than available quantity)" help="(-max_positive_count)"/> <param name="param_max_negative_count" type="integer" min="1" optional="True" value="1000" label="quantity of positive samples for training (randomly chosen if smaller than available quantity)" help="(-max_negative_count)"/> <param name="param_redundant" type="boolean" truevalue="-redundant true" falsevalue="-redundant false" checked="false" optional="True" label="if the input sets are redundant and the redundant peptides should occur more than once in the training set, this flag has to be set" help="(-redundant)"/> <param name="param_additive_cv" type="boolean" truevalue="-additive_cv true" falsevalue="-additive_cv false" checked="false" optional="True" label="if the step sizes should be interpreted additively (otherwise the actual value is multiplied with the step size to get the new value" help="(-additive_cv)"/> <param name="param_skip_cv" type="boolean" truevalue="-cv:skip_cv true" falsevalue="-cv:skip_cv false" checked="false" optional="True" label="Has to be set if the cv should be skipped and the model should just be trained with the specified parameters." help="(-skip_cv)"/> <param name="param_number_of_runs" type="integer" min="1" optional="True" value="10" label="number of runs for the CV" help="(-number_of_runs)"/> <param name="param_number_of_partitions" type="integer" min="2" optional="True" value="10" label="number of CV partitions" help="(-number_of_partitions)"/> <param name="param_degree_start" type="integer" min="1" optional="True" value="1" label="starting point of degree" help="(-degree_start)"/> <param name="param_degree_step_size" type="integer" value="2" label="step size point of degree" help="(-degree_step_size)"/> <param name="param_degree_stop" type="integer" value="4" label="stopping point of degree" help="(-degree_stop)"/> <param name="param_c_start" type="float" value="1.0" label="starting point of c" help="(-c_start)"/> <param name="param_c_step_size" type="float" value="100.0" label="step size of c" help="(-c_step_size)"/> <param name="param_c_stop" type="float" value="1000.0" label="stopping point of c" help="(-c_stop)"/> <param name="param_nu_start" type="float" min="0.0" max="1.0" optional="True" value="0.1" label="starting point of nu" help="(-nu_start)"/> <param name="param_nu_step_size" type="float" value="1.3" label="step size of nu" help="(-nu_step_size)"/> <param name="param_nu_stop" type="float" min="0.0" max="1.0" optional="True" value="0.9" label="stopping point of nu" help="(-nu_stop)"/> <param name="param_sigma_start" type="float" value="1.0" label="starting point of sigma" help="(-sigma_start)"/> <param name="param_sigma_step_size" type="float" value="1.3" label="step size of sigma" help="(-sigma_step_size)"/> <param name="param_sigma_stop" type="float" value="15.0" label="stopping point of sigma" help="(-sigma_stop)"/> </inputs> <outputs> <data name="param_out" label="output file: the model in libsvm format" format="txt"/> </outputs> <help>**What it does** Trains a model for the prediction of proteotypic peptides from a training set. For more information, visit http://ftp.mi.fu-berlin.de/OpenMS/release-documentation/html/TOPP_PTModel.html @REFERENCES@ </help> </tool>