Mercurial > repos > bgruening > openms
diff RTModel.xml @ 0:3d84209d3178 draft
Uploaded
| author | bgruening |
|---|---|
| date | Fri, 10 Oct 2014 18:20:03 -0400 |
| parents | |
| children | 6ead64a594bd |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/RTModel.xml Fri Oct 10 18:20:03 2014 -0400 @@ -0,0 +1,107 @@ +<?xml version='1.0' encoding='UTF-8'?> +<tool id="RTModel" name="RTModel" version="1.12.0"> + <description>Trains a model for the retention time prediction of peptides from a training set.</description> + <macros> + <token name="@EXECUTABLE@">RTModel</token> + <import>macros.xml</import> + </macros> + <expand macro="stdio"/> + <expand macro="requirements"/> + <command>RTModel + +-in ${param_in} +-in_positive ${param_in_positive} +-in_negative ${param_in_negative} +-out ${param_out} +-svm_type ${param_svm_type} +-nu ${param_nu} +-p ${param_p} +-c ${param_c} +-kernel_type ${param_kernel_type} +-degree ${param_degree} +-border_length ${param_border_length} +-max_std ${param_max_std} +-k_mer_length ${param_k_mer_length} +-sigma ${param_sigma} +-total_gradient_time ${param_total_gradient_time} +${param_first_dim_rt} +${param_additive_cv} +-threads \${GALAXY_SLOTS:-24} +${param_skip_cv} +-cv:number_of_runs ${param_number_of_runs} +-cv:number_of_partitions ${param_number_of_partitions} +-cv:degree_start ${param_degree_start} +-cv:degree_step_size ${param_degree_step_size} +-cv:degree_stop ${param_degree_stop} +-cv:p_start ${param_p_start} +-cv:p_step_size ${param_p_step_size} +-cv:p_stop ${param_p_stop} +-cv:c_start ${param_c_start} +-cv:c_step_size ${param_c_step_size} +-cv:c_stop ${param_c_stop} +-cv:nu_start ${param_nu_start} +-cv:nu_step_size ${param_nu_step_size} +-cv:nu_stop ${param_nu_stop} +-cv:sigma_start ${param_sigma_start} +-cv:sigma_step_size ${param_sigma_step_size} +-cv:sigma_stop ${param_sigma_stop} +</command> + <inputs> + <param name="param_in" type="data" format="idXML,txt" optional="True" label="This is the name of the input file (RT prediction). It is assumed that the file type is idXML. Alternatively you can provide a .txt file having a sequence and the corresponding rt per line.#br#" help="(-in)"/> + <param name="param_in_positive" type="data" format="idXML" optional="True" label="input file with positive examples (peptide separation prediction)#br#" help="(-in_positive)"/> + <param name="param_in_negative" type="data" format="idXML" optional="True" label="input file with negative examples (peptide separation prediction)#br#" help="(-in_negative)"/> + <param name="param_svm_type" type="select" optional="True" value="NU_SVR" label="the type of the svm (NU_SVR or EPSILON_SVR for RT prediction, automatically set#br#to C_SVC for separation prediction)#br#" help="(-svm_type)"> + <option value="NU_SVR">NU_SVR</option> + <option value="NU_SVC">NU_SVC</option> + <option value="EPSILON_SVR">EPSILON_SVR</option> + <option value="C_SVC">C_SVC</option> + </param> + <param name="param_nu" type="float" min="0.0" max="1.0" optional="True" value="0.5" label="the nu parameter [0..1] of the svm (for nu-SVR)" help="(-nu)"/> + <param name="param_p" type="float" value="0.1" label="the epsilon parameter of the svm (for epsilon-SVR)" help="(-p)"/> + <param name="param_c" type="float" value="1.0" label="the penalty parameter of the svm" help="(-c)"/> + <param name="param_kernel_type" type="select" optional="True" value="OLIGO" label="the kernel type of the svm" help="(-kernel_type)"> + <option value="LINEAR">LINEAR</option> + <option value="RBF">RBF</option> + <option value="POLY">POLY</option> + <option value="OLIGO">OLIGO</option> + </param> + <param name="param_degree" type="integer" min="1" optional="True" value="1" label="the degree parameter of the kernel function of the svm (POLY kernel)#br#" help="(-degree)"/> + <param name="param_border_length" type="integer" min="1" optional="True" value="22" label="length of the POBK" help="(-border_length)"/> + <param name="param_max_std" type="float" min="0.0" optional="True" value="10.0" label="max standard deviation for a peptide to be included (if there are several ones for one peptide string)(median is taken)" help="(-max_std)"/> + <param name="param_k_mer_length" type="integer" min="1" optional="True" value="1" label="k_mer length of the POBK" help="(-k_mer_length)"/> + <param name="param_sigma" type="float" value="5.0" label="sigma of the POBK" help="(-sigma)"/> + <param name="param_total_gradient_time" type="float" min="1e-05" optional="True" value="1.0" label="the time (in seconds) of the gradient (only for RT prediction)" help="(-total_gradient_time)"/> + <param name="param_first_dim_rt" type="boolean" truevalue="-first_dim_rt true" falsevalue="-first_dim_rt false" checked="false" optional="True" label="if set the model will be built for first_dim_rt" help="(-first_dim_rt)"/> + <param name="param_additive_cv" type="boolean" truevalue="-additive_cv true" falsevalue="-additive_cv false" checked="false" optional="True" label="if the step sizes should be interpreted additively (otherwise the actual value is multiplied#br#with the step size to get the new value" help="(-additive_cv)"/> + <param name="param_skip_cv" type="boolean" truevalue="-cv:skip_cv true" falsevalue="-cv:skip_cv false" checked="false" optional="True" label="Set to enable Cross-Validation or set to true if the model should just be trained with 1 set of specified parameters." help="(-skip_cv)"/> + <param name="param_number_of_runs" type="integer" min="1" optional="True" value="1" label="number of runs for the CV (each run creates a new random partition of the data)" help="(-number_of_runs)"/> + <param name="param_number_of_partitions" type="integer" min="2" optional="True" value="10" label="number of CV partitions" help="(-number_of_partitions)"/> + <param name="param_degree_start" type="integer" min="1" optional="True" value="1" label="starting point of degree" help="(-degree_start)"/> + <param name="param_degree_step_size" type="integer" value="2" label="step size point of degree" help="(-degree_step_size)"/> + <param name="param_degree_stop" type="integer" value="4" label="stopping point of degree" help="(-degree_stop)"/> + <param name="param_p_start" type="float" value="1.0" label="starting point of p" help="(-p_start)"/> + <param name="param_p_step_size" type="float" value="10.0" label="step size point of p" help="(-p_step_size)"/> + <param name="param_p_stop" type="float" value="1000.0" label="stopping point of p" help="(-p_stop)"/> + <param name="param_c_start" type="float" value="1.0" label="starting point of c" help="(-c_start)"/> + <param name="param_c_step_size" type="float" value="10.0" label="step size of c" help="(-c_step_size)"/> + <param name="param_c_stop" type="float" value="1000.0" label="stopping point of c" help="(-c_stop)"/> + <param name="param_nu_start" type="float" min="0.0" max="1.0" optional="True" value="0.3" label="starting point of nu" help="(-nu_start)"/> + <param name="param_nu_step_size" type="float" value="1.2" label="step size of nu" help="(-nu_step_size)"/> + <param name="param_nu_stop" type="float" min="0.0" max="1.0" optional="True" value="0.7" label="stopping point of nu" help="(-nu_stop)"/> + <param name="param_sigma_start" type="float" value="1.0" label="starting point of sigma" help="(-sigma_start)"/> + <param name="param_sigma_step_size" type="float" value="1.3" label="step size of sigma" help="(-sigma_step_size)"/> + <param name="param_sigma_stop" type="float" value="15.0" label="stopping point of sigma" help="(-sigma_stop)"/> + </inputs> + <outputs> + <data name="param_out" label="output file: the model in libsvm format" format="txt"/> + </outputs> + <help>**What it does** + +Trains a model for the retention time prediction of peptides from a training set. + + +For more information, visit http://ftp.mi.fu-berlin.de/OpenMS/release-documentation/html/TOPP_RTModel.html + +@REFERENCES@ +</help> +</tool>
