Mercurial > repos > bgruening > openms
diff PTModel.xml @ 0:3d84209d3178 draft
Uploaded
author | bgruening |
---|---|
date | Fri, 10 Oct 2014 18:20:03 -0400 |
parents | |
children | 6ead64a594bd |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/PTModel.xml Fri Oct 10 18:20:03 2014 -0400 @@ -0,0 +1,95 @@ +<?xml version='1.0' encoding='UTF-8'?> +<tool id="PTModel" name="PTModel" version="1.12.0"> + <description>Trains a model for the prediction of proteotypic peptides from a training set.</description> + <macros> + <token name="@EXECUTABLE@">PTModel</token> + <import>macros.xml</import> + </macros> + <expand macro="stdio"/> + <expand macro="requirements"/> + <command>PTModel + +-in_positive ${param_in_positive} +-in_negative ${param_in_negative} +-out ${param_out} +-c ${param_c} +-svm_type ${param_svm_type} +-nu ${param_nu} +-kernel_type ${param_kernel_type} +-degree ${param_degree} +-border_length ${param_border_length} +-k_mer_length ${param_k_mer_length} +-sigma ${param_sigma} +-max_positive_count ${param_max_positive_count} +-max_negative_count ${param_max_negative_count} +${param_redundant} +${param_additive_cv} +-threads \${GALAXY_SLOTS:-24} +${param_skip_cv} +-cv:number_of_runs ${param_number_of_runs} +-cv:number_of_partitions ${param_number_of_partitions} +-cv:degree_start ${param_degree_start} +-cv:degree_step_size ${param_degree_step_size} +-cv:degree_stop ${param_degree_stop} +-cv:c_start ${param_c_start} +-cv:c_step_size ${param_c_step_size} +-cv:c_stop ${param_c_stop} +-cv:nu_start ${param_nu_start} +-cv:nu_step_size ${param_nu_step_size} +-cv:nu_stop ${param_nu_stop} +-cv:sigma_start ${param_sigma_start} +-cv:sigma_step_size ${param_sigma_step_size} +-cv:sigma_stop ${param_sigma_stop} +</command> + <inputs> + <param name="param_in_positive" type="data" format="idXML" optional="False" label="input file with positive examples" help="(-in_positive)"/> + <param name="param_in_negative" type="data" format="idXML" optional="False" label="input file with negative examples" help="(-in_negative)"/> + <param name="param_c" type="float" value="1.0" label="the penalty parameter of the svm" help="(-c)"/> + <param name="param_svm_type" type="select" optional="True" value="C_SVC" label="the type of the svm (NU_SVC or C_SVC)" help="(-svm_type)"> + <option value="NU_SVC">NU_SVC</option> + <option value="C_SVC">C_SVC</option> + </param> + <param name="param_nu" type="float" min="0.0" max="1.0" optional="True" value="0.5" label="the nu parameter [0..1] of the svm (for nu-SVR)" help="(-nu)"/> + <param name="param_kernel_type" type="select" optional="True" value="OLIGO" label="the kernel type of the svm" help="(-kernel_type)"> + <option value="LINEAR">LINEAR</option> + <option value="RBF">RBF</option> + <option value="POLY">POLY</option> + <option value="OLIGO">OLIGO</option> + </param> + <param name="param_degree" type="integer" min="1" optional="True" value="1" label="the degree parameter of the kernel function of the svm (POLY kernel)" help="(-degree)"/> + <param name="param_border_length" type="integer" min="1" optional="True" value="22" label="length of the POBK" help="(-border_length)"/> + <param name="param_k_mer_length" type="integer" min="1" optional="True" value="1" label="k_mer length of the POBK" help="(-k_mer_length)"/> + <param name="param_sigma" type="float" value="5.0" label="sigma of the POBK" help="(-sigma)"/> + <param name="param_max_positive_count" type="integer" min="1" optional="True" value="1000" label="quantity of positive samples for training (randomly chosen if smaller than available quantity)" help="(-max_positive_count)"/> + <param name="param_max_negative_count" type="integer" min="1" optional="True" value="1000" label="quantity of positive samples for training (randomly chosen if smaller than available quantity)" help="(-max_negative_count)"/> + <param name="param_redundant" type="boolean" truevalue="-redundant true" falsevalue="-redundant false" checked="false" optional="True" label="if the input sets are redundant and the redundant peptides should occur more than once in the training set, this flag has to be set" help="(-redundant)"/> + <param name="param_additive_cv" type="boolean" truevalue="-additive_cv true" falsevalue="-additive_cv false" checked="false" optional="True" label="if the step sizes should be interpreted additively (otherwise the actual value is multiplied with the step size to get the new value" help="(-additive_cv)"/> + <param name="param_skip_cv" type="boolean" truevalue="-cv:skip_cv true" falsevalue="-cv:skip_cv false" checked="false" optional="True" label="Has to be set if the cv should be skipped and the model should just be trained with the specified parameters." help="(-skip_cv)"/> + <param name="param_number_of_runs" type="integer" min="1" optional="True" value="10" label="number of runs for the CV" help="(-number_of_runs)"/> + <param name="param_number_of_partitions" type="integer" min="2" optional="True" value="10" label="number of CV partitions" help="(-number_of_partitions)"/> + <param name="param_degree_start" type="integer" min="1" optional="True" value="1" label="starting point of degree" help="(-degree_start)"/> + <param name="param_degree_step_size" type="integer" value="2" label="step size point of degree" help="(-degree_step_size)"/> + <param name="param_degree_stop" type="integer" value="4" label="stopping point of degree" help="(-degree_stop)"/> + <param name="param_c_start" type="float" value="1.0" label="starting point of c" help="(-c_start)"/> + <param name="param_c_step_size" type="float" value="100.0" label="step size of c" help="(-c_step_size)"/> + <param name="param_c_stop" type="float" value="1000.0" label="stopping point of c" help="(-c_stop)"/> + <param name="param_nu_start" type="float" min="0.0" max="1.0" optional="True" value="0.1" label="starting point of nu" help="(-nu_start)"/> + <param name="param_nu_step_size" type="float" value="1.3" label="step size of nu" help="(-nu_step_size)"/> + <param name="param_nu_stop" type="float" min="0.0" max="1.0" optional="True" value="0.9" label="stopping point of nu" help="(-nu_stop)"/> + <param name="param_sigma_start" type="float" value="1.0" label="starting point of sigma" help="(-sigma_start)"/> + <param name="param_sigma_step_size" type="float" value="1.3" label="step size of sigma" help="(-sigma_step_size)"/> + <param name="param_sigma_stop" type="float" value="15.0" label="stopping point of sigma" help="(-sigma_stop)"/> + </inputs> + <outputs> + <data name="param_out" label="output file: the model in libsvm format" format="txt"/> + </outputs> + <help>**What it does** + +Trains a model for the prediction of proteotypic peptides from a training set. + + +For more information, visit http://ftp.mi.fu-berlin.de/OpenMS/release-documentation/html/TOPP_PTModel.html + +@REFERENCES@ +</help> +</tool>