Mercurial > repos > bgruening > numeric_clustering
diff numeric_clustering.xml @ 0:42a2825313e9 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/numeric_clustering commit ac9beb7e9c83b0ae811b304eb3085a4b0930f5a0
author | bgruening |
---|---|
date | Fri, 01 Jan 2016 10:24:53 -0500 |
parents | |
children | d645cdee08ed |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/numeric_clustering.xml Fri Jan 01 10:24:53 2016 -0500 @@ -0,0 +1,350 @@ +<tool id="numeric_clustering" name="Numeric Clustering" version="@VERSION@"> + <description></description> + <requirements> + <requirement type="package" version="2.3.0">anaconda</requirement> + </requirements> + <stdio> + <exit_code level="fatal" range="1:"/> + </stdio> + <macros> + <token name="@VERSION@">0.9</token> + <macro name="n_clusters"> + <param name="n_clusters" type="integer" optional="true" value="8" label="Number of clusters" + help="default value is 8 (--n_clusters)"/> + </macro> + <macro name="n_init"> + <param name="n_init" type="integer" optional="true" value="" label="Number of runs with different centroid seeds"/> + </macro> + <macro name="max_iter"> + <param name="max_iter" type="integer" optional="true" value="" label="Maximum number of iterations per single run"/> + </macro> + <macro name="random_state"> + <param name="random_state" type="integer" optional="true" value="" label="Initialize centers"/> + </macro> + <macro name="affinity"> + <param name="affinity" type="text" optional="true" value="" label="Affinity"/> + </macro> + <macro name="tol"> + <param name="tol" type="float" optional="true" value="" label="Relative tolerance"/> + </macro> + <macro name="init"> + <param name="init" type="select" label="Select initialization method"> + <option value="k-means++">k-means++</option> + <option value="random">random</option> + </param> + </macro> + </macros> + <version_command>echo "@VERSION@"</version_command> + <command><![CDATA[ + #import json + #set $params = dict() + #for $key, $value in $algorithm_options.items(): + #if not $key.startswith('__') and $key.strip() != 'selected_algorithm' and str($value).strip(): + #if str($value).strip() == 'false': + #set $value = False + #elif str($value).strip() == 'true': + #set $value = True + #else: + #try: + #set $val = float($value) + #try: + #set $value = int($value) + #except: + #set $value = float($value) + #end try + #except: + #set $value = str($value) + #end try + #end if + $params.update({str($key): $value}) + #end if + #end for + #set $json_string = json.dumps( $params ) + + python "$cluster_script" '$json_string' +]]> + </command> + <configfiles> + <configfile name="cluster_script"> +<![CDATA[#!/usr/bin/env python +import sys +import json +import numpy as np +import sklearn.cluster +import pandas + +data = pandas.DataFrame.from_csv("$infile", sep='\t', header=0, index_col=0, parse_dates=True, encoding=None, tupleize_cols=False ) +my_class = getattr(sklearn.cluster, "$algorithm_options.selected_algorithm") +cluster_object = my_class() + +params = json.loads( sys.argv[1] ) +cluster_object.set_params(**params) +if $end_column > $start_column: + data_matrix = data.values[:, $start_column-1:$end_column] +else: + data_matrix = data.values +prediction = cluster_object.fit_predict( data_matrix ) +data['cluster_label'] = prediction +data.to_csv(path_or_buf = "$outfile",sep="\t") +]]> + </configfile> + </configfiles> + <inputs> + <param name="infile" type="data" format="tabular" label="Data file with numeric values"/> + <param name="start_column" label="Clustering column from" type="data_column" data_ref="infile" optional="True" /> + <param name="end_column" label="to" type="data_column" data_ref="infile" optional="True" /> + <conditional name="algorithm_options"> + <param name="selected_algorithm" type="select" label="Clustering Algorithm"> + <option value="KMeans">KMeans</option> + <option value="DBSCAN">DBSCAN</option> + <option value="Birch">Birch</option> + <option value="MeanShift">MeanShift</option> + <option value="AffinityPropagation">Affinity Propagation</option> + <option value="AgglomerativeClustering">Agglomerative Clustering</option> + <option value="SpectralClustering">Spectral Clustering</option> + <option value="MiniBatchKMeans">Mini Batch KMeans</option> + </param> + <when value="KMeans"> + <expand macro="n_clusters"/> + <expand macro="init"/> + <expand macro="n_init"/> + <expand macro="max_iter"/> + <expand macro="tol"/> + <param name="precompute_distances" type="text" optional="true" value="" label="Precompute distances"/> + <expand macro="random_state"/> + <param name="copy_x" type="boolean" optional="true" truevalue="--copy_x" falsevale="" label="Do not modify original data"/> + </when> + <when value="DBSCAN"> + <param name="eps" type="float" optional="true" value="0.5" label="Maximum neghborhood distance"/> + <param name="min_samples" type="integer" optional="true" value="5" label="Core point minimum population"/> + <param name="metric" type="text" optional="true" value="euclidean" label="Metric"/> + <param name="algorithm" type="select" optional="true" value="auto" label="Pointwise distance algorithm"> + <option value="auto">auto</option> + <option value="ball_tree">ball_tree</option> + <option value="kd_tree">kd_tree</option> + <option value="brute">brute</option> + </param> + <param name="leaf_size" type="integer" optional="true" value="30" label="Leaf size"/> + </when> + <when value="Birch"> + <param name="threshold" type="float" optional="true" value="0.5" label="Subcluster radius threshold"/> + <param name="branching_factor" type="integer" optional="true" value="50" label="Maximum number of subclusters per branch"/> + <expand macro="n_clusters"/> <!-- default to 3--> + <!--param name="compute_labels" type="boolean" optional="true" truevalue="true" falsevale="false" label="Compute labels for each fit"/--> + </when> + <when value="AffinityPropagation"> + <param name="damping" type="float" optional="true" value="0.5" label="Damping factor"/> + <expand macro="max_iter"/> <!--default to 200 --> + <param name="convergence_iter" type="integer" optional="true" value="15" label="Number of iterations at each convergence step"/> + <param name="copy" type="boolean" optional="true" truevalue="true" falsevale="false" label="Make a copy of input data"/> + <!--param name="preference" type="text" optional="true" value="None" label="Array like shape (n_samples,)"/--> + <expand macro="affinity"/> <!--default = euclidean--> + </when> + <when value="MeanShift"> + <param name="bandwidth" type="float" optional="true" value="" label="RBF kernel bandwidth"/> + <!--param name="seeds" type="list" optional="true" value="None" label=""/--> + <param name="bin_seeding" type="boolean" optional="true" truevalue="true" falsevale="false" label="Discretize initial kernel locations"/> + <param name="min_bin_freq" type="integer" optional="true" value="1" label="Minimum number of seeds per bin"/> + <param name="cluster_all" type="boolean" optional="true" truevalue="true" falsevale="false" label="Cluster all"/> + </when> + <when value="AgglomerativeClustering"> + <expand macro="n_clusters"/> <!-- deafault 2--> + <expand macro="affinity"/> <!--default = euclidean--> + <!--param name="memory" type="callable" optional="true" value="Memory(cachedir=None)" label="Caching path"/--> + <!--param name="connectivity" type="list array-like or callable" optional="true" value="None" label="Connectivity matrix"/--> + <param name="n_components" type="integer" optional="true" value="" label="Number of connected components"/> + <!--param name="compute_full_tree" type="text or boolean" optional="true" value="auto" label=""/--> + <param name="linkage" type="select" optional="true" value="ward" label="Linkage"> + <option value="ward">ward</option> + <option value="complete">complete</option> + <option value="average">average</option> + </param> + <!--param name="pooling_func" type="callable" optional="np.mean" value="None" label=""/--> + </when> + <when value="SpectralClustering"> + <expand macro="n_clusters"/> + <param name="eigen_solver" type="select" value="arpack" label="Eigenvalue decomposition strategy"> + <option value="arpack">arpack</option> + <option value="lobpcg">lobpcg</option> + <option value="amg">amg</option> + </param> + <expand macro="random_state"/> + <!-- Todo: extend random_state type to int seed, RandomState instance, or None. --> + <expand macro="n_init"/> <!-- default to 10--> + <param name="gamma" type="float" optional="true" value="1.0" label="Kernel scaling factor"/> + <expand macro="affinity"/> <!--default =rbf--> + <param name="n_neighbors" type="integer" optional="true" value="10" label="Number of neighbors"/> + <!--param name="eigen_tol" type="float" optional="true" value="0.0" label="arpack eigendecomposition stopping threshold"/--> + <param name="assign_labels" type="select" optional="true" value="kmeans" label="Assign labels"> + <option value="kmeans">kmeans</option> + <option value="discretize">discretize</option> + </param> + <param name="degree" type="integer" optional="true" value="3" label="Degree of the polynomial (polynomial kernel only)"/> + <param name="coef0" type="integer" optional="true" value="1" label="Zero coefficient (polynomial and sigmoid kernels only)"/> + <!--param name="kernel_params" type="dict" optional="true" value="None" label=""/--> + </when> + <when value="MiniBatchKMeans"> + <expand macro="n_clusters"/> + <expand macro="init"/> + <expand macro="n_init"/> <!-- default to 3--> + <expand macro="max_iter"/> <!--default to 100--> + <expand macro="tol"/> <!--default = 0.0--> + <expand macro="random_state"/> + <param name="batch_size" type="integer" optional="true" value="100" label="Mini batch size"/> + <!--param name="compute_labels" type="boolean" optional="true" truevalue="true" falsevale="false" label="Compute labels for all data"/--> + <param name="max_no_improvement" type="integer" optional="true" value="10" label="Maximum number of improvement attempts"/> + <param name="init_size" type="integer" optional="true" value="" label="Number of random init samples"/> + <param name="reassignment_ratio" type="float" optional="true" value="0.01" label="Re-assignment ratio"/> + </when> + </conditional> + </inputs> + <outputs> + <data format_source="infile" name="outfile"/> + </outputs> + <tests> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="KMeans"/> + <param name="n_clusters" value="4" /> + <param name="init" value="k-means++" /> + <param name="random_state" value="100"/> + <output name="outfile" file="cluster_result01.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="KMeans"/> + <param name="n_clusters" value="6" /> + <param name="init" value="random" /> + <param name="random_state" value="100"/> + <output name="outfile" file="cluster_result02.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="DBSCAN"/> + <param name="algorithm" value="kd_tree"/> + <param name="leaf_size" value="10"/> + <param name="eps" value="1.0"/> + <output name="outfile" file="cluster_result03.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="Birch"/> + <param name="n_clusters" value="5"/> + <param name="threshold" value="0.008"/> + <output name="outfile" file="cluster_result04.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="Birch"/> + <param name="branching_factor" value="20"/> + <output name="outfile" file="cluster_result05.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="AffinityPropagation"/> + <param name="affinity" value="euclidean"/> + <param name="copy" value="false"/> + <output name="outfile" file="cluster_result06.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="AffinityPropagation"/> + <param name="damping" value="0.8"/> + <output name="outfile" file="cluster_result07.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="MeanShift"/> + <param name="min_bin_freq" value="3"/> + <output name="outfile" file="cluster_result08.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="MeanShift"/> + <param name="cluster_all" value="False"/> + <output name="outfile" file="cluster_result09.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="AgglomerativeClustering"/> + <param name="affinity" value="euclidean"/> + <param name="linkage" value="average"/> + <output name="outfile" file="cluster_result10.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="AgglomerativeClustering"/> + <param name="linkage" value="complete"/> + <param name="n_clusters" value="5"/> + <output name="outfile" file="cluster_result11.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="SpectralClustering"/> + <param name="eigen_solver" value="arpack"/> + <param name="n_neighbors" value="12"/> + <param name="n_clusters" value="7"/> + <param name="assign_labels" value="discretize"/> + <param name="random_state" value="100"/> + <output name="outfile" file="cluster_result12.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="SpectralClustering"/> + <param name="assign_labels" value="discretize"/> + <param name="random_state" value="100"/> + <param name="degree" value="2"/> + <output name="outfile" file="cluster_result13.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="MiniBatchKMeans"/> + <param name="tol" value="0.5"/> + <param name="random_state" value="100"/> + <output name="outfile" file="cluster_result14.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="MiniBatchKMeans"/> + <param name="n_init" value="5"/> + <param name="batch_size" value="10"/> + <param name="n_clusters" value="3"/> + <param name="random_state" value="100"/> + <param name="reassignment_ratio" value="1.0"/> + <output name="outfile" file="cluster_result15.txt"/> + </test> + <test> + <param name="infile" value="numeric_values.tabular" ftype="tabular"/> + <param name="selected_algorithm" value="KMeans"/> + <param name="start_column" value="3" /> + <param name="end_column" value="4" /> + <param name="n_clusters" value="6" /> + <param name="init" value="random" /> + <param name="random_state" value="100"/> + <output name="outfile" file="cluster_result16.txt"/> + </test> + </tests> + <help><![CDATA[ +**What it does** + +This clustering tool offers different clustering algorithms which are provided by +scikit-learn to find similarities among samples and cluster the samples based on these similarities. + + ]]></help> + <citations> + <citation type="bibtex"> + @article{scikit-learn, + title={Scikit-learn: Machine Learning in {P}ython}, + author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. + and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. + and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and + Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, + journal={Journal of Machine Learning Research}, + volume={12}, + pages={2825--2830}, + year={2011} + url = {https://github.com/scikit-learn/scikit-learn} + } + </citation> + </citations> +</tool>