Mercurial > repos > bgruening > nn_classifier
view nn_classifier.xml @ 10:657377594769 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tools/sklearn commit 35fa73d6e9ba8f0789ddfb743d893d950a68af02
author | bgruening |
---|---|
date | Tue, 10 Apr 2018 15:14:41 -0400 |
parents | 25a68adb2ade |
children | c64f57fe1b97 |
line wrap: on
line source
<tool id="nn_classifier" name="Nearest Neighbors Classification" version="@VERSION@"> <description></description> <macros> <import>main_macros.xml</import> </macros> <expand macro="python_requirements"/> <expand macro="macro_stdio"/> <version_command>echo "@VERSION@"</version_command> <command><![CDATA[ python "$nnc_script" '$inputs' ]]> </command> <configfiles> <inputs name="inputs"/> <configfile name="nnc_script"> <![CDATA[ import sys import json import numpy as np import sklearn.neighbors import pandas import pickle input_json_path = sys.argv[1] params = json.load(open(input_json_path, "r")) #if $selected_tasks.selected_task == "load": classifier_object = pickle.load(open("$infile_model", 'r')) data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) prediction = classifier_object.predict(data) prediction_df = pandas.DataFrame(prediction) res = pandas.concat([data, prediction_df], axis=1) res.to_csv(path_or_buf = "$outfile_predict", sep="\t", index=False) #else: data_train = pandas.read_csv("$selected_tasks.infile_train", sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) data = data_train.ix[:,0:len(data_train.columns)-1] labels = np.array(data_train[data_train.columns[len(data_train.columns)-1]]) selected_algorithm = params["selected_tasks"]["selected_algorithms"]["selected_algorithm"] if selected_algorithm == "nneighbors": classifier = params["selected_tasks"]["selected_algorithms"]["sampling_methods"]["sampling_method"] sys.stdout.write(classifier) options = params["selected_tasks"]["selected_algorithms"]["sampling_methods"]["options"] sys.stdout.write(str(options)) elif selected_algorithm == "ncentroid": options = params["selected_tasks"]["selected_algorithms"]["options"] classifier = "NearestCentroid" my_class = getattr(sklearn.neighbors, classifier) classifier_object = my_class(**options) classifier_object.fit(data,labels) pickle.dump(classifier_object,open("$outfile_fit", 'w+')) #end if ]]> </configfile> </configfiles> <inputs> <expand macro="train_loadConditional" model="zip"><!--Todo: add sparse to targets--> <param name="selected_algorithm" type="select" label="Classifier type"> <option value="nneighbors">Nearest Neighbors</option> <option value="ncentroid">Nearest Centroid</option> </param> <when value="nneighbors"> <conditional name="sampling_methods"> <param name="sampling_method" type="select" label="Neighbor selection method"> <option value="KNeighborsClassifier" selected="true">K-nearest neighbors</option> <option value="RadiusNeighborsClassifier">Radius-based</option> </param> <when value="KNeighborsClassifier"> <expand macro="nn_advanced_options"> <param argument="n_neighbors" type="integer" optional="true" value="5" label="Number of neighbors" help=" "/> </expand> </when> <when value="RadiusNeighborsClassifier"> <expand macro="nn_advanced_options"> <param argument="radius" type="float" optional="true" value="1.0" label="Radius" help="Range of parameter space to use by default for :meth ''radius_neighbors'' queries."/> </expand> </when> </conditional> </when> <when value="ncentroid"> <section name="options" title="Advanced Options" expanded="False"> <param argument="metric" type="text" optional="true" value="euclidean" label="Metric" help="The metric to use when calculating distance between instances in a feature array."/> <param argument="shrink_threshold" type="float" optional="true" value="" label="Shrink threshold" help="Floating point number for shrinking centroids to remove features."/> </section> </when> </expand> </inputs> <expand macro="output"/> <tests> <test> <param name="infile_train" value="train_set.tabular" ftype="tabular"/> <param name="selected_task" value="train"/> <param name="selected_algorithm" value="nneighbors"/> <param name="sampling_method" value="KNeighborsClassifier" /> <param name="algorithm" value="brute" /> <output name="outfile_fit" file="nn_model01.txt"/> </test> <test> <param name="infile_train" value="train_set.tabular" ftype="tabular"/> <param name="selected_task" value="train"/> <param name="selected_algorithm" value=""/> <param name="selected_algorithm" value="nneighbors"/> <param name="sampling_method" value="RadiusNeighborsClassifier" /> <output name="outfile_fit" file="nn_model02.txt"/> </test> <test> <param name="infile_train" value="train_set.tabular" ftype="tabular"/> <param name="selected_task" value="train"/> <param name="selected_algorithm" value="ncentroid"/> <output name="outfile_fit" file="nn_model03.txt"/> </test> <test> <param name="infile_model" value="nn_model01.txt" ftype="txt"/> <param name="infile_data" value="test_set.tabular" ftype="tabular"/> <param name="selected_task" value="load"/> <output name="outfile_predict" file="nn_prediction_result01.tabular"/> </test> <test> <param name="infile_model" value="nn_model02.txt" ftype="txt"/> <param name="infile_data" value="test_set.tabular" ftype="tabular"/> <param name="selected_task" value="load"/> <output name="outfile_predict" file="nn_prediction_result02.tabular"/> </test> <test> <param name="infile_model" value="nn_model03.txt" ftype="txt"/> <param name="infile_data" value="test_set.tabular" ftype="tabular"/> <param name="selected_task" value="load"/> <output name="outfile_predict" file="nn_prediction_result03.tabular"/> </test> </tests> <help><![CDATA[ **What it does** This module implements the k-nearest neighbors classification algorithms. For more information check http://scikit-learn.org/stable/modules/neighbors.html ]]></help> <expand macro="sklearn_citation"/> </tool>