Mercurial > repos > bgruening > nn_classifier
diff main_macros.xml @ 3:cd3e98b58c1e draft
planemo upload for repository https://github.com/bgruening/galaxytools/tools/sklearn commit a349cb4673231f12344e418513a08691925565d9
author | bgruening |
---|---|
date | Fri, 03 Jun 2016 13:55:59 -0400 |
parents | ebdb2e9fd1c7 |
children | c85acc0197c6 |
line wrap: on
line diff
--- a/main_macros.xml Tue May 31 16:51:19 2016 -0400 +++ b/main_macros.xml Fri Jun 03 13:55:59 2016 -0400 @@ -10,7 +10,7 @@ <xml name="macro_stdio"> <stdio> - <exit_code range="1:" level="fatal" description="Error occurred. Please check Tool Standard Error" /> + <exit_code range="1:" level="fatal" description="Error occurred. Please check Tool Standard Error"/> </stdio> </xml> @@ -23,7 +23,7 @@ <option value="load">Load a model and predict</option> </param> <when value="load"> - <param name="infile_model" type="data" format="@MODEL@" label="Models" help="Select a model file." /> + <param name="infile_model" type="data" format="@MODEL@" label="Models" help="Select a model file."/> <param name="infile_data" type="data" format="@DATA@" label="Data (tabular)" help="Select the dataset you want to classify."/> <conditional name="prediction_options"> <param name="prediction_option" type="select" label="Select the type of prediction"> @@ -37,7 +37,7 @@ </conditional> </when> <when value="train"> - <param name="infile_train" type="data" format="@TRAIN@" label="Training samples (tabular)" /> + <param name="infile_train" type="data" format="@TRAIN@" label="Training samples (tabular)"/> <conditional name="selected_algorithms"> <yield /> </conditional> @@ -52,7 +52,7 @@ <option value="load">Load a model and predict</option> </param> <when value="load"> - <param name="infile_model" type="data" format="@MODEL@" label="Models" help="Select a model file." /> + <param name="infile_model" type="data" format="@MODEL@" label="Models" help="Select a model file."/> <param name="infile_data" type="data" format="@DATA@" label="Data (tabular)" help="Select the dataset you want to classify."/> <conditional name="prediction_options"> <param name="prediction_option" type="select" label="Select the type of prediction"> @@ -275,6 +275,10 @@ </conditional> </xml> + <xml name="multitype_input" token_format="tabular" token_help="All datasets with tabular format are supporetd."> + <param name="infile_transform" type="data" format="@FORMAT@" label="Select a dataset to transform:" help="@HELP@"/> + </xml> + <!--Advanced options--> <xml name="nn_advanced_options"> @@ -525,58 +529,64 @@ <xml name="sparse_preprocessors"> <param name="selected_pre_processor" type="select" label="Select a preprocessor:"> - <option value="StandardScaler" selected="true">Standardize features by removing the mean and scaling to unit variance</option> - <option value="Binarizer">Binarize data</option> - <option value="Imputer">Complete missing values</option> - <option value="MaxAbsScaler">Scale features by their maximum absolute value</option> - <option value="Normalizer">Normalize samples individually to unit norm</option> + <option value="StandardScaler" selected="true">Standard Scaler (Standardizes features by removing the mean and scaling to unit variance)</option> + <option value="Binarizer">Binarizer (Binarizes data)</option> + <option value="Imputer">Imputer (Completes missing values)</option> + <option value="MaxAbsScaler">Max Abs Scaler (Scales features by their maximum absolute value)</option> + <option value="Normalizer">Normalizer (Normalizes samples individually to unit norm)</option> <yield/> </param> </xml> <xml name="sparse_preprocessor_options"> <when value="Binarizer"> + <expand macro="multitype_input" format="tabular,txt" help="Tabular and sparse datasets are supporetd."/> <section name="options" title="Advanced Options" expanded="False"> - <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Use a copy of data for precomputing binarization" help=" "/> - <param argument="threshold" type="float" optional="true" value="0.0" label="Threshold" help="Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. "/> + <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Use a copy of data for precomputing binarization" help=" "/> + <param argument="threshold" type="float" optional="true" value="0.0" label="Threshold" help="Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. "/> </section> </when> <when value="Imputer"> - <section name="options" title="Advanced Options" expanded="False"> - <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Use a copy of data for precomputing imputation" help=" "/> - <param argument="strategy" type="select" optional="true" label="Imputation strategy" help=" "> - <option value="mean" selected="true">Replace missing values using the mean along the axis</option> - <option value="median">Replace missing values using the median along the axis</option> - <option value="most_frequent">Replace missing using the most frequent value along the axis</option> - </param> - <param argument="missing_values" type="text" optional="true" value="NaN" label="Placeholder for missing values" help="For missing values encoded as numpy.nan, use the string value “NaN”"/> - <param argument="axis" type="select" optional="true" label="The axis along which to impute" help=" "> - <option value="0" selected="true">Impute along columns</option> - <option value="1">Impute along rows</option> - </param> - </section> + <expand macro="multitype_input" format="tabular,txt" help="Tabular and sparse datasets are supporetd."/> + <section name="options" title="Advanced Options" expanded="False"> + <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Use a copy of data for precomputing imputation" help=" "/> + <param argument="strategy" type="select" optional="true" label="Imputation strategy" help=" "> + <option value="mean" selected="true">Replace missing values using the mean along the axis</option> + <option value="median">Replace missing values using the median along the axis</option> + <option value="most_frequent">Replace missing using the most frequent value along the axis</option> + </param> + <param argument="missing_values" type="text" optional="true" value="NaN" label="Placeholder for missing values" help="For missing values encoded as numpy.nan, use the string value “NaN”"/> + <param argument="axis" type="boolean" optional="true" truevalue="1" falsevalue="0" label="Impute along axis = 1" help="If fasle, axis = 0 is selected for imputation. "/> + <!--param argument="axis" type="select" optional="true" label="The axis along which to impute" help=" "> + <option value="0" selected="true">Impute along columns</option> + <option value="1">Impute along rows</option> + </param--> + </section> </when> <when value="StandardScaler"> - <section name="options" title="Advanced Options" expanded="False"> - <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Use a copy of data for performing inplace scaling" help=" "/> - <param argument="with_mean" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Center the data before scaling" help=" "/> - <param argument="with_std" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Scale the data to unit variance (or unit standard deviation)" help=" "/> - </section> + <expand macro="multitype_input"/> + <section name="options" title="Advanced Options" expanded="False"> + <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Use a copy of data for performing inplace scaling" help=" "/> + <param argument="with_mean" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Center the data before scaling" help=" "/> + <param argument="with_std" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Scale the data to unit variance (or unit standard deviation)" help=" "/> + </section> </when> <when value="MaxAbsScaler"> - <section name="options" title="Advanced Options" expanded="False"> - <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Use a copy of data for precomputing scaling" help=" "/> - </section> + <expand macro="multitype_input" format="tabular,txt" help="Tabular and sparse datasets are supporetd."/> + <section name="options" title="Advanced Options" expanded="False"> + <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Use a copy of data for precomputing scaling" help=" "/> + </section> </when> <when value="Normalizer"> - <section name="options" title="Advanced Options" expanded="False"> - <param argument="norm" type="select" optional="true" label="The norm to use to normalize non zero samples" help=" "> - <option value="l1" selected="true">l1</option> - <option value="l2">l2</option> - <option value="max">max</option> - <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Use a copy of data for precomputing row normalization" help=" "/> - </param> - </section> + <expand macro="multitype_input" format="tabular,txt" help="Tabular and sparse datasets are supporetd."/> + <section name="options" title="Advanced Options" expanded="False"> + <param argument="norm" type="select" optional="true" label="The norm to use to normalize non zero samples" help=" "> + <option value="l1" selected="true">l1</option> + <option value="l2">l2</option> + <option value="max">max</option> + <param argument="copy" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolflase" checked="true" label="Use a copy of data for precomputing row normalization" help=" "/> + </param> + </section> </when> <yield/> </xml>