Mercurial > repos > bgruening > nn_classifier
diff nn_classifier.xml @ 18:c64f57fe1b97 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5d71c93a3dd804b1469852240a86021ab9130364
author | bgruening |
---|---|
date | Mon, 09 Jul 2018 14:26:44 -0400 |
parents | 25a68adb2ade |
children | fa36c40c2990 |
line wrap: on
line diff
--- a/nn_classifier.xml Sun Jul 01 03:14:50 2018 -0400 +++ b/nn_classifier.xml Mon Jul 09 14:26:44 2018 -0400 @@ -21,6 +21,9 @@ import pandas import pickle +@COLUMNS_FUNCTION@ +@GET_X_y_FUNCTION@ + input_json_path = sys.argv[1] params = json.load(open(input_json_path, "r")) @@ -29,7 +32,8 @@ classifier_object = pickle.load(open("$infile_model", 'r')) -data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) +header = 'infer' if params["selected_tasks"]["header"] else None +data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=header, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False) prediction = classifier_object.predict(data) prediction_df = pandas.DataFrame(prediction) res = pandas.concat([data, prediction_df], axis=1) @@ -37,10 +41,7 @@ #else: -data_train = pandas.read_csv("$selected_tasks.infile_train", sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) - -data = data_train.ix[:,0:len(data_train.columns)-1] -labels = np.array(data_train[data_train.columns[len(data_train.columns)-1]]) +X, y = get_X_y(params, "$selected_tasks.selected_algorithms.input_options.infile1" ,"$selected_tasks.selected_algorithms.input_options.infile2") selected_algorithm = params["selected_tasks"]["selected_algorithms"]["selected_algorithm"] @@ -55,7 +56,7 @@ my_class = getattr(sklearn.neighbors, classifier) classifier_object = my_class(**options) -classifier_object.fit(data,labels) +classifier_object.fit(X, y) pickle.dump(classifier_object,open("$outfile_fit", 'w+')) @@ -65,12 +66,13 @@ </configfile> </configfiles> <inputs> - <expand macro="train_loadConditional" model="zip"><!--Todo: add sparse to targets--> + <expand macro="sl_Conditional" model="zip"><!--Todo: add sparse to targets--> <param name="selected_algorithm" type="select" label="Classifier type"> <option value="nneighbors">Nearest Neighbors</option> <option value="ncentroid">Nearest Centroid</option> </param> <when value="nneighbors"> + <expand macro="sl_mixed_input"/> <conditional name="sampling_methods"> <param name="sampling_method" type="select" label="Neighbor selection method"> <option value="KNeighborsClassifier" selected="true">K-nearest neighbors</option> @@ -90,6 +92,7 @@ </conditional> </when> <when value="ncentroid"> + <expand macro="sl_mixed_input"/> <section name="options" title="Advanced Options" expanded="False"> <param argument="metric" type="text" optional="true" value="euclidean" label="Metric" help="The metric to use when calculating distance between instances in a feature array."/> @@ -104,7 +107,12 @@ <tests> <test> - <param name="infile_train" value="train_set.tabular" ftype="tabular"/> + <param name="infile1" value="train_set.tabular" ftype="tabular"/> + <param name="infile2" value="train_set.tabular" ftype="tabular"/> + <param name="header1" value="True"/> + <param name="header2" value="True"/> + <param name="col1" value="1,2,3,4"/> + <param name="col2" value="5"/> <param name="selected_task" value="train"/> <param name="selected_algorithm" value="nneighbors"/> <param name="sampling_method" value="KNeighborsClassifier" /> @@ -112,7 +120,12 @@ <output name="outfile_fit" file="nn_model01.txt"/> </test> <test> - <param name="infile_train" value="train_set.tabular" ftype="tabular"/> + <param name="infile1" value="train_set.tabular" ftype="tabular"/> + <param name="infile2" value="train_set.tabular" ftype="tabular"/> + <param name="header1" value="True"/> + <param name="header2" value="True"/> + <param name="col1" value="1,2,3,4"/> + <param name="col2" value="5"/> <param name="selected_task" value="train"/> <param name="selected_algorithm" value=""/> <param name="selected_algorithm" value="nneighbors"/> @@ -120,7 +133,12 @@ <output name="outfile_fit" file="nn_model02.txt"/> </test> <test> - <param name="infile_train" value="train_set.tabular" ftype="tabular"/> + <param name="infile1" value="train_set.tabular" ftype="tabular"/> + <param name="infile2" value="train_set.tabular" ftype="tabular"/> + <param name="header1" value="True"/> + <param name="header2" value="True"/> + <param name="col1" value="1,2,3,4"/> + <param name="col2" value="5"/> <param name="selected_task" value="train"/> <param name="selected_algorithm" value="ncentroid"/> <output name="outfile_fit" file="nn_model03.txt"/> @@ -128,18 +146,21 @@ <test> <param name="infile_model" value="nn_model01.txt" ftype="txt"/> <param name="infile_data" value="test_set.tabular" ftype="tabular"/> + <param name="header" value="True"/> <param name="selected_task" value="load"/> <output name="outfile_predict" file="nn_prediction_result01.tabular"/> </test> <test> <param name="infile_model" value="nn_model02.txt" ftype="txt"/> <param name="infile_data" value="test_set.tabular" ftype="tabular"/> + <param name="header" value="True"/> <param name="selected_task" value="load"/> <output name="outfile_predict" file="nn_prediction_result02.tabular"/> </test> <test> <param name="infile_model" value="nn_model03.txt" ftype="txt"/> <param name="infile_data" value="test_set.tabular" ftype="tabular"/> + <param name="header" value="True"/> <param name="selected_task" value="load"/> <output name="outfile_predict" file="nn_prediction_result03.tabular"/> </test>