Mercurial > repos > bgruening > nn_classifier
diff nn_classifier.xml @ 5:25a68adb2ade draft
planemo upload for repository https://github.com/bgruening/galaxytools/tools/sklearn commit 0e582cf1f3134c777cce3aa57d71b80ed95e6ba9
author | bgruening |
---|---|
date | Fri, 16 Feb 2018 09:13:21 -0500 |
parents | 4354c286f7a7 |
children | c64f57fe1b97 |
line wrap: on
line diff
--- a/nn_classifier.xml Thu Jun 23 15:26:05 2016 -0400 +++ b/nn_classifier.xml Fri Feb 16 09:13:21 2018 -0500 @@ -33,7 +33,7 @@ prediction = classifier_object.predict(data) prediction_df = pandas.DataFrame(prediction) res = pandas.concat([data, prediction_df], axis=1) -res.to_csv(path_or_buf = "$outfile", sep="\t", index=False) +res.to_csv(path_or_buf = "$outfile_predict", sep="\t", index=False) #else: @@ -57,7 +57,7 @@ classifier_object = my_class(**options) classifier_object.fit(data,labels) -pickle.dump(classifier_object,open("$outfile", 'w+')) +pickle.dump(classifier_object,open("$outfile_fit", 'w+')) #end if @@ -65,7 +65,7 @@ </configfile> </configfiles> <inputs> - <expand macro="train_loadConditional"><!--Todo: add sparse to targets--> + <expand macro="train_loadConditional" model="zip"><!--Todo: add sparse to targets--> <param name="selected_algorithm" type="select" label="Classifier type"> <option value="nneighbors">Nearest Neighbors</option> <option value="ncentroid">Nearest Centroid</option> @@ -83,22 +83,25 @@ </when> <when value="RadiusNeighborsClassifier"> <expand macro="nn_advanced_options"> - <param argument="radius" type="float" optional="true" value="1.0" label="Radius" help="Range of parameter space to use by default for :meth ''radius_neighbors'' queries."/> + <param argument="radius" type="float" optional="true" value="1.0" label="Radius" + help="Range of parameter space to use by default for :meth ''radius_neighbors'' queries."/> </expand> </when> - </conditional> + </conditional> </when> <when value="ncentroid"> <section name="options" title="Advanced Options" expanded="False"> - <param argument="metric" type="text" optional="true" value="euclidean" label="Metric" help="The metric to use when calculating distance between instances in a feature array."/> - <param argument="shrink_threshold" type="float" optional="true" value="" label="Shrink threshold" help="Floating point number for shrinking centroids to remove features."/> + <param argument="metric" type="text" optional="true" value="euclidean" label="Metric" + help="The metric to use when calculating distance between instances in a feature array."/> + <param argument="shrink_threshold" type="float" optional="true" value="" label="Shrink threshold" + help="Floating point number for shrinking centroids to remove features."/> </section> </when> </expand> </inputs> - <outputs> - <data format="txt" name="outfile"/> - </outputs> + + <expand macro="output"/> + <tests> <test> <param name="infile_train" value="train_set.tabular" ftype="tabular"/> @@ -106,7 +109,7 @@ <param name="selected_algorithm" value="nneighbors"/> <param name="sampling_method" value="KNeighborsClassifier" /> <param name="algorithm" value="brute" /> - <output name="outfile" file="nn_model01.txt"/> + <output name="outfile_fit" file="nn_model01.txt"/> </test> <test> <param name="infile_train" value="train_set.tabular" ftype="tabular"/> @@ -114,31 +117,31 @@ <param name="selected_algorithm" value=""/> <param name="selected_algorithm" value="nneighbors"/> <param name="sampling_method" value="RadiusNeighborsClassifier" /> - <output name="outfile" file="nn_model02.txt"/> + <output name="outfile_fit" file="nn_model02.txt"/> </test> <test> <param name="infile_train" value="train_set.tabular" ftype="tabular"/> <param name="selected_task" value="train"/> <param name="selected_algorithm" value="ncentroid"/> - <output name="outfile" file="nn_model03.txt"/> + <output name="outfile_fit" file="nn_model03.txt"/> </test> <test> <param name="infile_model" value="nn_model01.txt" ftype="txt"/> <param name="infile_data" value="test_set.tabular" ftype="tabular"/> <param name="selected_task" value="load"/> - <output name="outfile" file="nn_prediction_result01.tabular"/> + <output name="outfile_predict" file="nn_prediction_result01.tabular"/> </test> <test> <param name="infile_model" value="nn_model02.txt" ftype="txt"/> <param name="infile_data" value="test_set.tabular" ftype="tabular"/> <param name="selected_task" value="load"/> - <output name="outfile" file="nn_prediction_result02.tabular"/> + <output name="outfile_predict" file="nn_prediction_result02.tabular"/> </test> <test> <param name="infile_model" value="nn_model03.txt" ftype="txt"/> <param name="infile_data" value="test_set.tabular" ftype="tabular"/> <param name="selected_task" value="load"/> - <output name="outfile" file="nn_prediction_result03.tabular"/> + <output name="outfile_predict" file="nn_prediction_result03.tabular"/> </test> </tests> <help><![CDATA[ @@ -147,4 +150,4 @@ For more information check http://scikit-learn.org/stable/modules/neighbors.html ]]></help> <expand macro="sklearn_citation"/> -</tool> \ No newline at end of file +</tool>