# HG changeset patch
# User bgruening
# Date 1370604782 14400
# Node ID 8624069d7a0ee2bc386b167e83d4ebd837786fff
Uploaded
diff -r 000000000000 -r 8624069d7a0e glimmer2gff.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/glimmer2gff.py Fri Jun 07 07:33:02 2013 -0400
@@ -0,0 +1,36 @@
+#!/usr/bin/env python
+
+"""
+Input: Glimmer3 prediction
+Output: GFF3 file
+Return a GFF3 file with the genes predicted by Glimmer3
+Bjoern Gruening
+
+Note: Its not a full-fledged GFF3 file, its a really simple one.
+
+"""
+
+import sys, re
+
+def __main__():
+ input_file = open(sys.argv[1], 'r')
+
+ print '##gff-version 3\n'
+ for line in input_file:
+ line = line.strip()
+ if line[0] == '>':
+ header = line[1:]
+ else:
+ (id, start, end, frame, score) = re.split('\s+', line)
+ if int(end) > int(start):
+ strand = '+'
+ else:
+ strand = '-'
+ (start, end) = (end, start)
+
+ rest = 'frame=%s;score=%s' % (frame, score)
+ print '\t'.join([header, 'glimmer_prediction', 'predicted_gene', start, end, '.', strand, '.', rest])
+
+
+if __name__ == "__main__" :
+ __main__()
diff -r 000000000000 -r 8624069d7a0e glimmer2gff.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/glimmer2gff.xml Fri Jun 07 07:33:02 2013 -0400
@@ -0,0 +1,63 @@
+
+ Converts Glimmer Files to GFF Files
+
+ glimmer2gff.py
+ $input > $output
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+**What it does**
+
+Converts a Glimmer3 output File to an GFF Annotation File::
+
+**Example**
+
+Input::
+ >contig00097 sbe.0.234
+ orf00003 2869 497 -2 5.60
+ orf00005 3894 2875 -1 7.05
+ orf00007 4242 4826 +3 8.04
+ orf00010 4846 5403 +1 8.57
+ orf00012 6858 5413 -1 10.87
+ orf00013 6857 7594 +2 3.61
+ orf00014 7751 9232 +2 11.34
+ orf00015 9374 10357 +2 10.66
+ orf00017 10603 11196 +1 13.39
+ orf00021 11303 11911 +2 8.81
+ orf00025 14791 12050 -2 13.51
+ orf00026 15216 16199 +3 6.37
+ orf00028 16333 16935 +1 8.86
+
+
+Output:
+ contig00097 sbe.0.234 glimmer gene 497 2869 . - . -2 5.60
+ contig00097 sbe.0.234 glimmer gene 2875 3894 . - . -1 7.05
+ contig00097 sbe.0.234 glimmer gene 4242 4826 . + . +3 8.04
+ contig00097 sbe.0.234 glimmer gene 4846 5403 . + . +1 8.57
+ contig00097 sbe.0.234 glimmer gene 5413 6858 . - . -1 10.87
+ contig00097 sbe.0.234 glimmer gene 6857 7594 . + . +2 3.61
+ contig00097 sbe.0.234 glimmer gene 7751 9232 . + . +2 11.34
+ contig00097 sbe.0.234 glimmer gene 9374 10357 . + . +2 10.66
+ contig00097 sbe.0.234 glimmer gene 10603 11196 . + . +1 13.39
+ contig00097 sbe.0.234 glimmer gene 11303 11911 . + . +2 8.81
+ contig00097 sbe.0.234 glimmer gene 12050 14791 . - . -2 13.51
+ contig00097 sbe.0.234 glimmer gene 15216 16199 . + . +3 6.37
+ contig00097 sbe.0.234 glimmer gene 16333 16935 . + . +1 8.86
+
+
+-----
+
+
+
+
diff -r 000000000000 -r 8624069d7a0e glimmer3-build-icm-wrapper.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/glimmer3-build-icm-wrapper.xml Fri Jun 07 07:33:02 2013 -0400
@@ -0,0 +1,119 @@
+
+ (glimmer3)
+
+ glimmer
+
+
+ build-icm
+ --depth $depth
+ #if $no_stops:
+ --no_stops
+ #end if
+ --period $period
+ --width $width
+
+ #if $stop_codon_opts.stop_codon_opts_selector == "gb":
+ --trans_table "${stop_codon_opts.genbank_gencode}"
+ #else:
+ --stop_codons "${stop_codon_opts.stop_codons}"
+ #end if
+
+ $outfile < $infile
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+**What it does**
+
+ This program constructs an interpolated context model (ICM) from an input set of sequences.
+ This model can be used by Glimmer3 to predict genes.
+
+-----
+
+
+**Example**
+
+* input::
+
+ -Genome Sequence
+
+ >CELF22B7 C.aenorhabditis elegans (Bristol N2) cosmid F22B7
+ GATCCTTGTAGATTTTGAATTTGAAGTTTTTTCTCATTCCAAAACTCTGT
+ GATCTGAAATAAAATGTCTCAAAAAAATAGAAGAAAACATTGCTTTATAT
+ TTATCAGTTATGGTTTTCAAAATTTTCTGACATACCGTTTTGCTTCTTTT
+ TTTCTCATCTTCTTCAAATATCAATTGTGATAATCTGACTCCTAACAATC
+ GAATTTCTTTTCCTTTTTCTTTTTCCAACAACTCCAGTGAGAACTTTTGA
+ ATATCTTCAAGTGACTTCACCACATCAGAAGGTGTCAACGATCTTGTGAG
+ AACATCGAATGAAGATAATTTTAATTTTAGAGTTACAGTTTTTCCTCCGA
+ CAATTCCTGATTTACGAACATCTTCTTCAAGCATTCTACAGATTTCTTGA
+ TGCTCTTCTAGGAGGATGTTGAAATCCGAAGTTGGAGAAAAAGTTCTCTC
+ AACTGAAATGCTTTTTCTTCGTGGATCCGATTCAGATGGACGACCTGGCA
+ GTCCGAGAGCCGTTCGAAGGAAAGATTCTTGTGAGAGAGGCGTGAAACAC
+ AAAGGGTATAGGTTCTTCTTCAGATTCATATCACCAACAGTTTGAATATC
+ CATTGCTTTCAGTTGAGCTTCGCATACACGACCAATTCCTCCAACCTAAA
+ AAATTATCTAGGTAAAACTAGAAGGTTATGCTTTAATAGTCTCACCTTAC
+ GAATCGGTAAATCCTTCAAAAACTCCATAATCGCGTTTTTATCATTTTCT
+ .....
+
+* output:
+ interpolated context model (ICM)
+
+
+-------
+
+**References**
+
+A.L. Delcher, K.A. Bratke, E.C. Powers, and S.L. Salzberg. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics (Advance online version) (2007).
+
+
+
+
diff -r 000000000000 -r 8624069d7a0e glimmer3-main-wrapper.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/glimmer3-main-wrapper.xml Fri Jun 07 07:33:02 2013 -0400
@@ -0,0 +1,232 @@
+
+ Predict ORFs in prokaryotic genomes (knowlegde-based)
+
+ glimmer
+ biopython
+ GLIMMER_SCRIPT_PATH
+
+
+ #import tempfile, os
+ #set $temp = tempfile.NamedTemporaryFile( delete=False )
+ # $temp.close()
+
+ glimmer3
+ --max_olap $max_olap
+ --gene_len $gene_len
+ --threshold $threshold
+ #if float( $gc_percent ) > 0.0:
+ --gc_percent $gc_percent
+ #end if
+
+ #if $stop_codon_opts.stop_codon_opts_selector == "gb":
+ --trans_table "${stop_codon_opts.genbank_gencode}"
+ #else:
+ --stop_codons "${stop_codon_opts.stop_codons}"
+ #end if
+
+ $linear
+ $no_indep
+ $extend
+ $seq_input
+ $icm_input
+ $temp 2>&1;
+
+ ## convert prediction to FASTA sequences
+ \$GLIMMER_SCRIPT_PATH/glimmer_orf_to_seq.py $temp".predict" $seq_input $genes_output
+
+ #if $report:
+ mv $temp".predict" $prediction;
+ #else:
+ rm $temp".predict";
+ #end if
+
+ #if $detailed_report:
+ mv $temp".detail" $detailed;
+ #else:
+ rm $temp".detail";
+ #end if
+
+ rm $temp
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ report == True
+
+
+ detailed_report == True
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+**What it does**
+
+ This is the main program that makes gene preditions based on an interpolated context model (ICM).
+ The ICM can be generated either with a de novo prediction (see glimmer Overview) or with extracted CDS from related organisms.
+
+-----
+
+**TIP** To extract CDS from a GenBank file use the tool *Extract ORF from a GenBank file*.
+
+-----
+
+**Glimmer Overview**
+
+::
+
+************** ************** ************** **************
+* * * * * * * *
+* long-orfs * ===> * Extract * ===> * build-icm * ===> * glimmer3 *
+* * * * * * * *
+************** ************** ************** **************
+
+**Example**
+
+* input::
+
+ -Genome Sequence
+
+ CELF22B7 C.aenorhabditis elegans (Bristol N2) cosmid F22B7
+ GATCCTTGTAGATTTTGAATTTGAAGTTTTTTCTCATTCCAAAACTCTGT
+ GATCTGAAATAAAATGTCTCAAAAAAATAGAAGAAAACATTGCTTTATAT
+ TTATCAGTTATGGTTTTCAAAATTTTCTGACATACCGTTTTGCTTCTTTT
+ TTTCTCATCTTCTTCAAATATCAATTGTGATAATCTGACTCCTAACAATC
+ GAATTTCTTTTCCTTTTTCTTTTTCCAACAACTCCAGTGAGAACTTTTGA
+ ATATCTTCAAGTGACTTCACCACATCAGAAGGTGTCAACGATCTTGTGAG
+ AACATCGAATGAAGATAATTTTAATTTTAGAGTTACAGTTTTTCCTCCGA
+ CAATTCCTGATTTACGAACATCTTCTTCAAGCATTCTACAGATTTCTTGA
+ TGCTCTTCTAGGAGGATGTTGAAATCCGAAGTTGGAGAAAAAGTTCTCTC
+ AACTGAAATGCTTTTTCTTCGTGGATCCGATTCAGATGGACGACCTGGCA
+ GTCCGAGAGCCGTTCGAAGGAAAGATTCTTGTGAGAGAGGCGTGAAACAC
+ AAAGGGTATAGGTTCTTCTTCAGATTCATATCACCAACAGTTTGAATATC
+ CATTGCTTTCAGTTGAGCTTCGCATACACGACCAATTCCTCCAACCTAAA
+ AAATTATCTAGGTAAAACTAGAAGGTTATGCTTTAATAGTCTCACCTTAC
+ GAATCGGTAAATCCTTCAAAAACTCCATAATCGCGTTTTTATCATTTTCT
+ .....
+
+
+ - interpolated context model (ICM) 92: glimmer3-build-icm on data 89
+ - maximum overlap length 50
+ - minimum gene length. 90
+ - threshold score 30
+ - linear True
+
+* output::
+
+ .predict file
+ >CELF22B7 C.aenorhabditis elegans (Bristol N2) cosmid F22B7.
+ orf00001 40137 52 +2 8.68
+ orf00004 603 34 -1 2.91
+ orf00006 1289 1095 -3 3.16
+ orf00007 1555 1391 -2 2.33
+ orf00008 1809 1576 -1 1.02
+ orf00010 1953 2066 +3 3.09
+ orf00011 2182 2304 +1 0.89
+ orf00013 2390 2521 +2 0.60
+ orf00018 2570 3073 +2 2.54
+ orf00020 3196 3747 +1 2.91
+ orf00022 3758 4000 +2 0.83
+ orf00023 4399 4157 -2 1.31
+ orf00025 4463 4759 +2 2.92
+ orf00026 4878 5111 +3 0.78
+ orf00027 5468 5166 -3 1.64
+ orf00029 5590 5832 +1 0.29
+ orf00032 6023 6226 +2 6.02
+ orf00033 6217 6336 +1 3.09
+ ........
+
+
+ .details file
+ >CELF22B7 C.aenorhabditis elegans (Bristol N2) cosmid F22B7.
+ Sequence length = 40222
+
+ ----- Start ----- --- Length ---- ------------- Scores -------------
+ ID Frame of Orf of Gene Stop of Orf of Gene Raw InFrm F1 F2 F3 R1 R2 R3 NC
+ 0001 +2 40137 40137 52 135 135 9.26 96 - 96 - - 3 - 0
+ 0002 +1 58 64 180 120 114 5.01 69 69 - - 30 - - 0
+ +3 300 309 422 120 111 -0.68 20 - - 20 38 - - 41
+ +3 423 432 545 120 111 1.29 21 - 51 21 13 - 8 5
+ 0003 +2 401 416 595 192 177 2.51 93 - 93 - 5 - - 1
+ 0004 -1 645 552 34 609 516 2.33 99 - - - 99 - - 0
+ +1 562 592 762 198 168 -2.54 1 1 - - - - - 98
+ +1 763 772 915 150 141 -1.34 1 1 - - - - 86 11
+ +3 837 846 1007 168 159 1.35 28 - 50 28 - - 17 3
+ 0005 -3 1073 977 654 417 321 0.52 84 - - - - - 84 15
+ 0006 -3 1373 1319 1095 276 222 3.80 99 - - - - - 99 0
+ 0007 -2 1585 1555 1391 192 162 2.70 98 - - - - 98 - 1
+ 0008 -1 1812 1809 1576 234 231 1.26 94 - - - 94 - - 5
+ 0009 +2 1721 1730 1945 222 213 0.68 80 - 80 - - - - 19
+ .....
+
+-------
+
+**References**
+
+A.L. Delcher, K.A. Bratke, E.C. Powers, and S.L. Salzberg. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics (Advance online version) (2007).
+
+
+
+
+
diff -r 000000000000 -r 8624069d7a0e glimmer_acgt_content.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/glimmer_acgt_content.xml Fri Jun 07 07:33:02 2013 -0400
@@ -0,0 +1,55 @@
+
+ of windows in each sequence
+
+ glimmer
+
+
+ window-acgt
+ $percentage
+ $input_win_len
+ $input_win_skip
+ < $infile > $output
+
+ ##TODO prettify the output
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+**What it does**
+
+This tool calculates the ACGT-Content from a given Sequence, given a sliding window.
+
+-------
+
+**Output**
+
+Output is in the format:
+
+ window-start window-len A's C's G's T's #other %GC
+
+Note the last window in the sequence can be shorter than *window-len* if the sequence ends prematurely
+
+
+
+
+**References**
+
+A.L. Delcher, K.A. Bratke, E.C. Powers, and S.L. Salzberg. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics (Advance online version) (2007).
+
+
+
+
diff -r 000000000000 -r 8624069d7a0e glimmer_orf_to_seq.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/glimmer_orf_to_seq.py Fri Jun 07 07:33:02 2013 -0400
@@ -0,0 +1,44 @@
+#!/usr/bin/env python
+"""
+Input: DNA FASTA file + Glimmer ORF file
+Output: ORF sequences as FASTA file
+Author: Bjoern Gruening
+"""
+import sys, os
+import Bio.SeqIO
+from Bio.SeqRecord import SeqRecord
+
+def glimmer2seq( glimmer_prediction = sys.argv [1], genome_sequence = sys.argv[2], outfile = sys.argv[3] ):
+ if len(sys.argv) >= 4:
+ glimmerfile = open( glimmer_prediction, "r")
+ sequence = open( genome_sequence )
+ else:
+ print "Missing input values."
+ sys.exit()
+
+ fastafile = Bio.SeqIO.parse(sequence, "fasta")
+
+ sequences = dict()
+ seq_records = list()
+ for entry in fastafile:
+ sequences[entry.description] = entry
+
+ for line in glimmerfile:
+ if line.startswith('>'):
+ entry = sequences[ line[1:].strip() ]
+ else:
+ orf_start = int(line[8:17])
+ orf_end = int(line[18:26])
+
+ orf_name = line[0:8]
+ if orf_start <= orf_end:
+ seq_records.add( SeqRecord( entry.seq[ orf_start-1 : orf_end ], id = orf_name, description = entry.description ) )
+ else:
+ seq_records.add( SeqRecord( entry.seq[ orf_end-1 : orf_start ].reverse_complement(), id = orf_name, description = entry.description ) )
+
+ SeqIO.write( seq_records, outfile, "fasta" )
+ glimmerfile.close()
+ sequence.close()
+
+if __name__ == "__main__" :
+ glimmer2seq()
diff -r 000000000000 -r 8624069d7a0e glimmer_orf_to_seq.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/glimmer_orf_to_seq.xml Fri Jun 07 07:33:02 2013 -0400
@@ -0,0 +1,30 @@
+
+ assigns ORF to its DNA sequence
+
+ biopython
+
+
+ glimmer_orf_to_seq.py
+ $glimmer_orfs
+ $input_fasta
+ $output
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+**What it does**
+
+This tool extract all gene sequences from a genome, which are predicted with Glimmer3.
+
+
+
diff -r 000000000000 -r 8624069d7a0e glimmer_predict.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/glimmer_predict.py Fri Jun 07 07:33:02 2013 -0400
@@ -0,0 +1,73 @@
+#!/usr/bin/env python
+"""
+Input: DNA Fasta File
+Output: Tabular
+Return Tabular File with predicted ORF's
+Bjoern Gruening
+"""
+import sys, os
+import tempfile
+import subprocess
+import shutil
+from glimmer_orf_to_seq import glimmer2seq
+
+def main():
+ genome_seq_file = sys.argv[1]
+ outfile_classic_glimmer = sys.argv[2]
+ outfile_ext_path = sys.argv[3]
+ oufile_genes = sys.argv[8]
+
+ tag = 'glimmer_non_knowlegde_based_prediction'
+ tempdir = tempfile.gettempdir()
+
+ trainingset = os.path.join( tempdir, tag + ".train" )
+ icm = os.path.join( tempdir, tag + ".icm" )
+
+ longorfs = tempfile.NamedTemporaryFile()
+ trainingset = tempfile.NamedTemporaryFile()
+ icm = tempfile.NamedTemporaryFile()
+
+ #glimmeropts = "-o0 -g110 -t30 -l"
+ glimmeropts = "-o%s -g%s -t%s" % (sys.argv[4], sys.argv[5], sys.argv[6])
+ if sys.argv[7] == "true":
+ glimmeropts += " -l"
+
+ """
+ 1. Find long, non-overlapping orfs to use as a training set
+ """
+ subprocess.Popen(["long-orfs", "-n", "-t", "1.15",
+ genome_seq_file, "-"], stdout = longorfs,
+ stderr = subprocess.PIPE).communicate()
+
+ """
+ 2. Extract the training sequences from the genome file
+ """
+ subprocess.Popen(["extract", "-t",
+ genome_seq_file, longorfs.name], stdout=trainingset,
+ stderr=subprocess.PIPE).communicate()
+
+ """
+ 3. Build the icm from the training sequences
+ """
+
+ # the "-" parameter is used to redirect the output to stdout
+ subprocess.Popen(["build-icm", "-r", "-"],
+ stdin=open(trainingset.name), stdout = icm,
+ stderr=subprocess.PIPE).communicate()
+
+ """
+ Run Glimmer3
+ """
+ b = subprocess.Popen(["glimmer3", glimmeropts,
+ genome_seq_file, icm.name, os.path.join(tempdir, tag)],
+ stdout = subprocess.PIPE, stderr=subprocess.PIPE).communicate()
+
+ shutil.copyfile( os.path.join( tempdir, tag + ".predict" ), outfile_classic_glimmer )
+ if outfile_ext_path.strip() != 'None':
+ shutil.copyfile( os.path.join( tempdir, tag + ".detail" ), outfile_ext_path )
+
+ glimmer2seq( outfile_classic_glimmer, genome_seq_file, oufile_genes )
+
+
+if __name__ == "__main__" :
+ main()
diff -r 000000000000 -r 8624069d7a0e glimmer_predict.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/glimmer_predict.xml Fri Jun 07 07:33:02 2013 -0400
@@ -0,0 +1,94 @@
+
+ Predict ORFs in prokaryotic genomes (not knowlegde-based)
+
+ glimmer
+ biopython
+
+
+ glimmer_predict.py
+ $input
+ $prediction
+ #if $detailed_report:
+ $output_ext
+ #else:
+ "None"
+ #end if
+ $overlap
+ $gene_length
+ $threshold
+ $linear
+ $genes_output
+
+
+
+
+
+
+
+
+
+
+
+
+ report == True
+
+
+ detailed_report == True
+
+
+
+
+
+
+
+
+
+
+**What it does**
+
+This tool predicts open reading frames (orfs) from a given DNA Sequence. That tool is not knowlegde-based.
+
+The recommended way is to use a trained Glimmer3 with ICM model. Use the knowlegde-based version for that and insert/generate a training set.
+
+-----
+
+**Example**
+
+Suppose you have the following DNA formatted sequences::
+
+ >SQ Sequence 8667507 BP; 1203558 A; 3121252 C; 3129638 G; 1213059 T; 0 other;
+ cccgcggagcgggtaccacatcgctgcgcgatgtgcgagcgaacacccgggctgcgcccg
+ ggtgttgcgctcccgctccgcgggagcgctggcgggacgctgcgcgtcccgctcaccaag
+ cccgcttcgcgggcttggtgacgctccgtccgctgcgcttccggagttgcggggcttcgc
+ cccgctaaccctgggcctcgcttcgctccgccttgggcctgcggcgggtccgctgcgctc
+ ccccgcctcaagggcccttccggctgcgcctccaggacccaaccgcttgcgcgggcctgg
+
+Running this tool will produce this::
+
+ >SQ Sequence 8667507 BP; 1203558 A; 3121252 C; 3129638 G; 1213059 T; 0 other;
+ orf00001 577 699 +1 5.24
+ orf00003 800 1123 +2 5.18
+ orf00004 1144 3813 +1 10.62
+ orf00006 3857 6220 +2 6.07
+ orf00007 6226 7173 +1 1.69
+ orf00008 7187 9307 +2 8.95
+ orf00009 9424 10410 +1 8.29
+ orf00010 10515 11363 +3 7.00
+ orf00011 11812 11964 +1 2.80
+ orf00012 12360 13457 +3 4.80
+ orf00013 14379 14044 -1 7.41
+ orf00015 15029 14739 -3 12.43
+ orf00016 15066 15227 +3 1.91
+ orf00020 16061 15351 -3 2.83
+ orf00021 17513 17391 -3 2.20
+ orf00023 17529 17675 +3 0.11
+
+
+-------
+
+**References**
+
+A.L. Delcher, K.A. Bratke, E.C. Powers, and S.L. Salzberg. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics (Advance online version) (2007).
+
+
+
diff -r 000000000000 -r 8624069d7a0e readme.rst
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/readme.rst Fri Jun 07 07:33:02 2013 -0400
@@ -0,0 +1,70 @@
+Galaxy wrapper for RepeatMasker
+===============================
+
+This wrapper is copyright 2012-2013 by Björn Grüning.
+
+This is a wrapper for the command line tool of Glimmer3.
+http://www.cbcb.umd.edu/software/glimmer/
+
+Glimmer is a system for finding genes in microbial DNA,
+especially the genomes of bacteria, archaea, and viruses.
+Glimmer (Gene Locator and Interpolated Markov ModelER) uses interpolated
+Markov models (IMMs) to identify the coding regions and distinguish them from noncoding DNA.
+
+A.L. Delcher, D. Harmon, S. Kasif, O. White, and S.L. Salzberg. Improved microbial gene identification with GLIMMER, Nucleic Acids Research 27:23 (1999), 4636-4641.
+S. Salzberg, A. Delcher, S. Kasif, and O. White. Microbial gene identification using interpolated Markov models, Nucleic Acids Research 26:2 (1998), 544-548.
+A.L. Delcher, K.A. Bratke, E.C. Powers, and S.L. Salzberg. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics (Advance online version) (2007).
+
+
+
+Installation
+============
+
+Since version 0.2 the recommended installation procedure is via the Galaxy Tool Shed.
+
+To install Glimmer3 manually, please download Glimmer3 from http://www.cbcb.umd.edu/software/glimmer/glimmer302.tar.gz
+and follow the installation instructions. You can also use packages from your distribution like http://packages.debian.org/stable/science/tigr-glimmer
+
+To install the wrapper copy the glimmer3 folder in the galaxy tools
+folder and modify the tools_conf.xml file to make the tool available to Galaxy.
+For example:
+
+
+
+
+
+
+
+
+
+
+
+
+History
+=======
+
+- v0.1: Initial public release
+- v0.2: Add tool shed integration
+
+
+Wrapper Licence (MIT/BSD style)
+===============================
+
+Permission to use, copy, modify, and distribute this software and its
+documentation with or without modifications and for any purpose and
+without fee is hereby granted, provided that any copyright notices
+appear in all copies and that both those copyright notices and this
+permission notice appear in supporting documentation, and that the
+names of the contributors or copyright holders not be used in
+advertising or publicity pertaining to distribution of the software
+without specific prior permission.
+
+THE CONTRIBUTORS AND COPYRIGHT HOLDERS OF THIS SOFTWARE DISCLAIM ALL
+WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
+WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL THE
+CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT
+OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
+OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
+OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
+OR PERFORMANCE OF THIS SOFTWARE.
+
diff -r 000000000000 -r 8624069d7a0e tool_dependencies.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/tool_dependencies.xml Fri Jun 07 07:33:02 2013 -0400
@@ -0,0 +1,30 @@
+
+
+
+
+
+
+ $REPOSITORY_INSTALL_DIR
+
+
+
+
+ http://www.cbcb.umd.edu/software/glimmer/glimmer302b.tar.gz
+ tar xfvz glimmer302b.tar.gz
+ cd ./glimmer3.02/src && make
+
+
+ ./glimmer3.02/bin
+ $INSTALL_DIR/bin
+
+
+ $INSTALL_DIR/bin
+
+
+
+ To compile glimmer you need a C compiler (usually gcc).
+Glimmer is a system for finding genes in microbial DNA, especially the genomes of bacteria, archaea, and viruses.
+Glimmer (Gene Locator and Interpolated Markov ModelER) uses interpolated Markov models (IMMs) to identify the coding regions and distinguish them from noncoding DNA.
+http://www.cbcb.umd.edu/software/glimmer/
+
+