Mercurial > repos > bgruening > glimmer
view glimmer3-build-icm-wrapper.xml @ 1:a6582d591d64
Uploaded
author | bgruening |
---|---|
date | Fri, 07 Jun 2013 07:45:02 -0400 |
parents | 8624069d7a0e |
children | ce7228503d49 |
line wrap: on
line source
<tool id="glimmer_build-icm" name="ICM builder" version="0.1"> <description>(glimmer3)</description> <requirements> <requirement type="package" version="3.02b">glimmer</requirement> </requirements> <command> build-icm --depth $depth #if $no_stops: --no_stops #end if --period $period --width $width #if $stop_codon_opts.stop_codon_opts_selector == "gb": --trans_table "${stop_codon_opts.genbank_gencode}" #else: --stop_codons "${stop_codon_opts.stop_codons}" #end if $outfile < $infile </command> <inputs> <param name="infile" type="data" format="fasta" label="Trainings Dataset" help="A set of known genes in FASTA format." /> <param name="depth" type="integer" value="7" label="Set the depth of the ICM" help="The depth is the maximum number of positions in the context window that will be used to determine the probability of the predicted position." /> <param name="period" type="integer" value="3" label="Set the period of the ICM" help="The period is the number of different submodels for different positions in the text in a cyclic pattern. E.g., if the period is 3, the first submodel will determine positions 1, 4, 7, ..." /> <param name="width" type="integer" value="12" label="Set the width of the ICM" help="The width includes the predicted position." /> <param name="no_stops" type="boolean" truevalue="--no_stops" falsevalue="" checked="true" label="Do not use any input strings with in-frame stop codons" /> <conditional name="stop_codon_opts"> <param name="stop_codon_opts_selector" type="select" label="Specify start codons as"> <option value="gb" selected="True">Genbank translation table entry</option> <option value="free_form">Comma-separated list</option> </param> <when value="gb"> <param name="genbank_gencode" type="select" label="Use Genbank translation table to specify stop codons"> <option value="1" select="True">1. Standard</option> <option value="2">2. Vertebrate Mitochondrial</option> <option value="3">3. Yeast Mitochondrial</option> <option value="4">4. Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code</option> <option value="5">5. Invertebrate Mitochondrial</option> <option value="6">6. Ciliate, Dasycladacean and Hexamita Nuclear Code</option> <option value="9">9. Echinoderm Mitochondrial</option> <option value="10">10. Euplotid Nuclear</option> <option value="11">11. Bacteria and Archaea</option> <option value="12">12. Alternative Yeast Nuclear</option> <option value="13">13. Ascidian Mitochondrial</option> <option value="14">14. Flatworm Mitochondrial</option> <option value="15">15. Blepharisma Macronuclear</option> <option value="16">16. Chlorophycean Mitochondrial</option> <option value="21">21. Trematode Mitochondrial</option> <option value="22">22. Scenedesmus obliquus mitochondrial</option> <option value="23">23. Thraustochytrium Mitochondrial</option> <option value="24">24. Pterobranchia mitochondrial</option> </param> </when> <when value="free_form"> <param name="stop_codons" type="text" value="tag,tga,taa" label="Specify stop codons as a comma-separated list" /> </when> </conditional> </inputs> <outputs> <data format="data" name="outfile" /> </outputs> <tests> <test> <param name="infile" value='glimmer3/seqTest.fa'/> <output name="outfile" file='glimmer3/buildICMTestOutput.dat'/> </test> </tests> <help> **What it does** This program constructs an interpolated context model (ICM) from an input set of sequences. This model can be used by Glimmer3 to predict genes. ----- **Example** * input:: -Genome Sequence >CELF22B7 C.aenorhabditis elegans (Bristol N2) cosmid F22B7 GATCCTTGTAGATTTTGAATTTGAAGTTTTTTCTCATTCCAAAACTCTGT GATCTGAAATAAAATGTCTCAAAAAAATAGAAGAAAACATTGCTTTATAT TTATCAGTTATGGTTTTCAAAATTTTCTGACATACCGTTTTGCTTCTTTT TTTCTCATCTTCTTCAAATATCAATTGTGATAATCTGACTCCTAACAATC GAATTTCTTTTCCTTTTTCTTTTTCCAACAACTCCAGTGAGAACTTTTGA ATATCTTCAAGTGACTTCACCACATCAGAAGGTGTCAACGATCTTGTGAG AACATCGAATGAAGATAATTTTAATTTTAGAGTTACAGTTTTTCCTCCGA CAATTCCTGATTTACGAACATCTTCTTCAAGCATTCTACAGATTTCTTGA TGCTCTTCTAGGAGGATGTTGAAATCCGAAGTTGGAGAAAAAGTTCTCTC AACTGAAATGCTTTTTCTTCGTGGATCCGATTCAGATGGACGACCTGGCA GTCCGAGAGCCGTTCGAAGGAAAGATTCTTGTGAGAGAGGCGTGAAACAC AAAGGGTATAGGTTCTTCTTCAGATTCATATCACCAACAGTTTGAATATC CATTGCTTTCAGTTGAGCTTCGCATACACGACCAATTCCTCCAACCTAAA AAATTATCTAGGTAAAACTAGAAGGTTATGCTTTAATAGTCTCACCTTAC GAATCGGTAAATCCTTCAAAAACTCCATAATCGCGTTTTTATCATTTTCT ..... * output: interpolated context model (ICM) ------- **References** A.L. Delcher, K.A. Bratke, E.C. Powers, and S.L. Salzberg. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics (Advance online version) (2007). </help> </tool>