Mercurial > repos > bgruening > eden_toolbox
view EDeN_test.xml @ 11:bf63bd4cf462 draft default tip
Uploaded
author | bgruening |
---|---|
date | Thu, 15 May 2014 17:25:44 -0400 (2014-05-15) |
parents | d495c233148c |
children |
line wrap: on
line source
<tool id="bg_eden_test" name="EDeN Test" version="0.1"> <description></description> <macros> <import>eden_macros.xml</import> </macros> <expand macro="requirements" /> <command> EDeN --action TEST --input_data_file_name $sparse_vector_infile --file_type "SPARSE_VECTOR" --binary_file_type --model_file_name $model_infile --minimal_output </command> <inputs> <param format="eden_sparse_vector" name="sparse_vector_infile" type="data" label="Input File" help="Sparse Vector file, created with EDeN convert." /> <param format="txt" name="model_infile" type="data" label="Input Model" help="Created with EDeN Train."/> <expand macro="kernel_type_options" /> <expand macro="graph_types" /> <expand macro="normalization_kernel_hash_radius_dist_vertex" /> </inputs> <outputs> <data format="tabular" name="prediction" from_work_dir="prediction" label="EDeN on ${on_string}: Prediction"/> <data format="tabular" name="margin" from_work_dir="margin" label="EDeN on ${on_string}: Margin"/> </outputs> <tests> <test> </test> </tests> <help> .. class:: infomark **What it does** The linear model is induced using the accelerated stochastic gradient descent technique by Léon Bottou and Yann LeCun. When the target information is 0, a self-training algorithm is used to impute a positive or negative class to the unsupervised instances. If the target information is imbalanced a minority class resampling technique is used to rebalance the training set. @references@ </help> </tool>