Mercurial > repos > bgruening > chemfp
comparison chemfp_clustering/butina_clustering.py @ 0:a8ac5250d59c
Uploaded
| author | bgruening |
|---|---|
| date | Tue, 26 Mar 2013 13:05:41 -0400 |
| parents | |
| children | a4e261ee0a51 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:a8ac5250d59c |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 """ | |
| 3 Modified version of code examples from the chemfp project. | |
| 4 http://code.google.com/p/chem-fingerprints/ | |
| 5 Thanks to Andrew Dalke of Andrew Dalke Scientific! | |
| 6 """ | |
| 7 | |
| 8 import chemfp | |
| 9 import sys | |
| 10 import os | |
| 11 | |
| 12 chemfp_fingerprint_file = sys.argv[1] | |
| 13 tanimoto_threshold = float(sys.argv[2]) | |
| 14 outfile = sys.argv[3] | |
| 15 processors = int(sys.argv[4]) | |
| 16 | |
| 17 | |
| 18 def get_hit_indicies(hits): | |
| 19 return [id for (id, score) in hits] | |
| 20 | |
| 21 out = open(outfile, 'w') | |
| 22 dataset = chemfp.load_fingerprints( chemfp_fingerprint_file ) | |
| 23 | |
| 24 chemfp.set_num_threads( processors ) | |
| 25 search = dataset.threshold_tanimoto_search_arena(dataset, threshold = tanimoto_threshold) | |
| 26 | |
| 27 # Reorder so the centroid with the most hits comes first. | |
| 28 # (That's why I do a reverse search.) | |
| 29 # Ignore the arbitrariness of breaking ties by fingerprint index | |
| 30 results = sorted( ( (len(hits), i, hits) for (i, hits) in enumerate(search.iter_indices_and_scores()) ),reverse=True) | |
| 31 | |
| 32 | |
| 33 # Determine the true/false singletons and the clusters | |
| 34 true_singletons = [] | |
| 35 false_singletons = [] | |
| 36 clusters = [] | |
| 37 | |
| 38 seen = set() | |
| 39 | |
| 40 for (size, fp_idx, hits) in results: | |
| 41 if fp_idx in seen: | |
| 42 # Can't use a centroid which is already assigned | |
| 43 continue | |
| 44 seen.add(fp_idx) | |
| 45 | |
| 46 if size == 1: | |
| 47 # The only fingerprint in the exclusion sphere is itself | |
| 48 true_singletons.append(fp_idx) | |
| 49 continue | |
| 50 | |
| 51 members = get_hit_indicies(hits) | |
| 52 # Figure out which ones haven't yet been assigned | |
| 53 unassigned = [target_idx for target_idx in members if target_idx not in seen] | |
| 54 | |
| 55 if not unassigned: | |
| 56 false_singletons.append(fp_idx) | |
| 57 continue | |
| 58 | |
| 59 # this is a new cluster | |
| 60 clusters.append( (fp_idx, unassigned) ) | |
| 61 seen.update(unassigned) | |
| 62 | |
| 63 len_cluster = len(clusters) | |
| 64 #out.write( "#%s true singletons: %s\n" % ( len(true_singletons), " ".join(sorted(dataset.ids[idx] for idx in true_singletons)) ) ) | |
| 65 #out.write( "#%s false singletons: %s\n" % ( len(false_singletons), " ".join(sorted(dataset.ids[idx] for idx in false_singletons)) ) ) | |
| 66 | |
| 67 out.write( "#%s true singletons\n" % len(true_singletons) ) | |
| 68 out.write( "#%s false singletons\n" % len(false_singletons) ) | |
| 69 out.write( "#clusters: %s\n" % len_cluster ) | |
| 70 | |
| 71 | |
| 72 # Sort so the cluster with the most compounds comes first, | |
| 73 # then by alphabetically smallest id | |
| 74 def cluster_sort_key(cluster): | |
| 75 centroid_idx, members = cluster | |
| 76 return -len(members), dataset.ids[centroid_idx] | |
| 77 | |
| 78 clusters.sort(key=cluster_sort_key) | |
| 79 | |
| 80 | |
| 81 for centroid_idx, members in clusters: | |
| 82 centroid_name = dataset.ids[centroid_idx] | |
| 83 out.write("%s\t%s\t%s\n" % (centroid_name, len(members), " ".join(dataset.ids[idx] for idx in members))) | |
| 84 #ToDo: len(members) need to be some biggest top 90% or something ... | |
| 85 | |
| 86 for idx in true_singletons: | |
| 87 out.write("%s\t%s\n" % (dataset.ids[idx], 0)) | |
| 88 | |
| 89 out.close() | |
| 90 | |
| 91 |
