# HG changeset patch # User bgruening # Date 1740565648 0 # Node ID bc28236f407b52cd63b0225ada651e1bd98f3c28 # Parent 0c0de5546fe19b4e70130114d866488a9d751842 planemo upload for repository https://github.com/bgruening/galaxytools/tree/recommendation_training/tools/bioimaging commit e08711c242a340a1671dfca35f52d3724086e968 diff -r 0c0de5546fe1 -r bc28236f407b bioimage_inference.xml --- a/bioimage_inference.xml Tue Oct 15 12:57:33 2024 +0000 +++ b/bioimage_inference.xml Wed Feb 26 10:27:28 2025 +0000 @@ -2,7 +2,7 @@ with PyTorch 2.4.1 - 0 + 1 @@ -30,12 +30,18 @@ --imaging_model '$input_imaging_model' --image_file '$input_image_file' --image_size '$input_image_input_size' + --image_axes '$input_image_input_axes' ]]> - + + + + + + @@ -46,15 +52,97 @@ - - + + + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -64,13 +152,14 @@ The tool takes a BioImage.IO model and an image (as TIF or PNG) to be analyzed. The analysis is performed by the model. The model is used to obtain a prediction of the result of the analysis, and the predicted image becomes available as a TIF file in the Galaxy history. **Input files** - - BioImage.IO model: Add one of the model from Galaxy file uploader by choosing a "remote" file at "ML Models/bioimaging-models" - - Image to be analyzed: Provide an image as TIF/PNG file - - Provide the necessary input size for the model. This information can be found in the RDF file of each model (RDF file > config > test_information > inputs > size) + - BioImage.IO model: Add one of the model from Galaxy file uploader by choosing a "remote" file at "ML Models/bioimaging-models" + - Image to be analyzed: Provide an image as TIF/PNG file + - Provide the necessary input size for the model. This information can be found in the RDF file of each model (RDF file > config > test_information > inputs > size) + - Provide axes of input image. This information can also be found in the RDF file of each model (RDF file > inputs > axes). An example value of axes is 'bczyx' for 3D U-Net Arabidopsis Lateral Root Primordia model **Output files** - - Predicted image: Predicted image using the BioImage.IO model - - Predicted image matrix: Predicted image matrix in original dimensions + - Predicted image: Predicted image using the BioImage.IO model + - Predicted image matrix: Predicted image matrix in original dimensions ]]> diff -r 0c0de5546fe1 -r bc28236f407b main.py --- a/main.py Tue Oct 15 12:57:33 2024 +0000 +++ b/main.py Wed Feb 26 10:27:28 2025 +0000 @@ -7,70 +7,128 @@ import imageio import numpy as np import torch +import torch.nn.functional as F -def find_dim_order(user_in_shape, input_image): +def dynamic_resize(image: torch.Tensor, target_shape: tuple): """ - Find the correct order of input image's - shape. For a few models, the order of input size - mentioned in the RDF.yaml file is reversed compared - to the input image's original size. If it is reversed, - transpose the image to find correct order of image's - dimensions. + Resize an input tensor dynamically to the target shape. + + Parameters: + - image: Input tensor with shape (C, D1, D2, ..., DN) (any number of spatial dims) + - target_shape: Tuple specifying the target shape (C', D1', D2', ..., DN') + + Returns: + - Resized tensor with target shape target_shape. """ - image_shape = list(input_image.shape) - # reverse the input shape provided from RDF.yaml file - correct_order = user_in_shape.split(",")[::-1] - # remove 1s from the original dimensions - correct_order = [int(i) for i in correct_order if i != "1"] - if (correct_order[0] == image_shape[-1]) and (correct_order != image_shape): - input_image = torch.tensor(input_image.transpose()) - return input_image, correct_order + # Extract input shape + input_shape = image.shape + num_dims = len(input_shape) # Includes channels and spatial dimensions + + # Ensure target shape matches the number of dimensions + if len(target_shape) != num_dims: + raise ValueError( + f"Target shape {target_shape} must match input dimensions {num_dims}" + ) + + # Extract target channels and spatial sizes + target_channels = target_shape[0] # First element is the target channel count + target_spatial_size = target_shape[1:] # Remaining elements are spatial dimensions + + # Add batch dim (N=1) for resizing + image = image.unsqueeze(0) + + # Choose the best interpolation mode based on dimensionality + if num_dims == 4: + interp_mode = "trilinear" + elif num_dims == 3: + interp_mode = "bilinear" + elif num_dims == 2: + interp_mode = "bicubic" + else: + interp_mode = "nearest" + + # Resize spatial dimensions dynamically + image = F.interpolate( + image, size=target_spatial_size, mode=interp_mode, align_corners=False + ) + + # Adjust channels if necessary + current_channels = image.shape[1] + + if target_channels > current_channels: + # Expand channels by repeating existing ones + expand_factor = target_channels // current_channels + remainder = target_channels % current_channels + image = image.repeat(1, expand_factor, *[1] * (num_dims - 1)) + + if remainder > 0: + extra_channels = image[ + :, :remainder, ... + ] # Take the first few channels to match target + image = torch.cat([image, extra_channels], dim=1) + + elif target_channels < current_channels: + # Reduce channels by averaging adjacent ones + image = image[:, :target_channels, ...] # Simply slice to reduce channels + return image.squeeze(0) # Remove batch dimension before returning if __name__ == "__main__": arg_parser = argparse.ArgumentParser() - arg_parser.add_argument("-im", "--imaging_model", required=True, help="Input BioImage model") - arg_parser.add_argument("-ii", "--image_file", required=True, help="Input image file") - arg_parser.add_argument("-is", "--image_size", required=True, help="Input image file's size") + arg_parser.add_argument( + "-im", "--imaging_model", required=True, help="Input BioImage model" + ) + arg_parser.add_argument( + "-ii", "--image_file", required=True, help="Input image file" + ) + arg_parser.add_argument( + "-is", "--image_size", required=True, help="Input image file's size" + ) + arg_parser.add_argument( + "-ia", "--image_axes", required=True, help="Input image file's axes" + ) # get argument values args = vars(arg_parser.parse_args()) model_path = args["imaging_model"] input_image_path = args["image_file"] + input_size = args["image_size"] # load all embedded images in TIF file test_data = imageio.v3.imread(input_image_path, index="...") + test_data = test_data.astype(np.float32) test_data = np.squeeze(test_data) - test_data = test_data.astype(np.float32) + + target_image_dim = input_size.split(",")[::-1] + target_image_dim = [int(i) for i in target_image_dim if i != "1"] + target_image_dim = tuple(target_image_dim) - # assess the correct dimensions of TIF input image - input_image_shape = args["image_size"] - im_test_data, shape_vals = find_dim_order(input_image_shape, test_data) + exp_test_data = torch.tensor(test_data) + # check if image dimensions are reversed + reversed_order = list(reversed(range(exp_test_data.dim()))) + exp_test_data_T = exp_test_data.permute(*reversed_order) + if exp_test_data_T.shape == target_image_dim: + exp_test_data = exp_test_data_T + if exp_test_data.shape != target_image_dim: + for i in range(len(target_image_dim) - exp_test_data.dim()): + exp_test_data = exp_test_data.unsqueeze(i) + try: + exp_test_data = dynamic_resize(exp_test_data, target_image_dim) + except Exception as e: + raise RuntimeError(f"Error during resizing: {e}") from e + + current_dimension = len(exp_test_data.shape) + input_axes = args["image_axes"] + target_dimension = len(input_axes) + # expand input image based on the number of target dimensions + for i in range(target_dimension - current_dimension): + exp_test_data = torch.unsqueeze(exp_test_data, i) # load model model = torch.load(model_path) model.eval() - # find the number of dimensions required by the model - target_dimension = 0 - for param in model.named_parameters(): - target_dimension = len(param[1].shape) - break - current_dimension = len(list(im_test_data.shape)) - - # update the dimensions of input image if the required image by - # the model is smaller - slices = tuple(slice(0, s_val) for s_val in shape_vals) - - # apply the slices to the reshaped_input - im_test_data = im_test_data[slices] - exp_test_data = torch.tensor(im_test_data) - - # expand input image's dimensions - for i in range(target_dimension - current_dimension): - exp_test_data = torch.unsqueeze(exp_test_data, i) - # make prediction pred_data = model(exp_test_data) pred_data_output = pred_data.detach().numpy() diff -r 0c0de5546fe1 -r bc28236f407b test-data/output_nucleisegboundarymodel.tif Binary file test-data/output_nucleisegboundarymodel.tif has changed diff -r 0c0de5546fe1 -r bc28236f407b test-data/output_nucleisegboundarymodel_matrix.npy Binary file test-data/output_nucleisegboundarymodel_matrix.npy has changed