Mercurial > repos > bgruening > bioimage_inference
view bioimage_inference.xml @ 4:2b61d8fcfa52 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/bioimaging commit f038722c21eaa3018e1cef0004ac7bd283d15269
author | bgruening |
---|---|
date | Mon, 07 Apr 2025 14:46:13 +0000 |
parents | bc28236f407b |
children | 37b9ead209da |
line wrap: on
line source
<tool id="bioimage_inference" name="Process image using a BioImage.IO model" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="23.0"> <description>with PyTorch</description> <macros> <token name="@TOOL_VERSION@">2.4.1</token> <token name="@VERSION_SUFFIX@">2</token> </macros> <creator> <organization name="European Galaxy Team" url="https://galaxyproject.org/eu/" /> <person givenName="Anup" familyName="Kumar" email="kumara@informatik.uni-freiburg.de" /> <person givenName="Beatriz" familyName="Serrano-Solano" email="beatriz.serrano.solano@eurobioimaging.eu" /> <person givenName="Leonid" familyName="Kostrykin" email="leonid.kostrykin@bioquant.uni-heidelberg.de" /> </creator> <edam_operations> <edam_operation>operation_3443</edam_operation> </edam_operations> <xrefs> <xref type="bio.tools">pytorch</xref> <xref type="biii">pytorch</xref> </xrefs> <requirements> <requirement type="package" version="3.9.12">python</requirement> <requirement type="package" version="@TOOL_VERSION@">pytorch</requirement> <requirement type="package" version="0.19.1">torchvision</requirement> <requirement type="package" version="2.35.1">imageio</requirement> </requirements> <version_command>echo "@VERSION@"</version_command> <command detect_errors="aggressive"> <![CDATA[ python '$__tool_directory__/main.py' --imaging_model '$input_imaging_model' --image_file '$input_image_file' --image_size '$input_image_input_size' --image_axes '$input_image_input_axes' ]]> </command> <inputs> <param name="input_imaging_model" type="data" format="zip" label="BioImage.IO model" help="Please upload a BioImage.IO model."/> <param name="input_image_file" type="data" format="tiff,png" label="Input image" help="Please provide an input image for the analysis."/> <param name="input_image_input_size" type="text" optional="false" label="Size of the input image" help="Provide the size of the input image. See the chosen model's RDF file to find the correct input size. For example: for the BioImage.IO model MitochondriaEMSegmentationBoundaryModel, the input size is 256 x 256 x 32 x 1. Enter the size as 256,256,32,1."/> <param name="input_image_input_axes" type="select" label="Axes of the input image" optional="false" help="Provide the input axes of the input image. See the chosen model's RDF file to find the correct axes. For example: for the BioImage.IO model MitochondriaEMSegmentationBoundaryModel, the input axes is 'bczyx'"> <option value="bczyx">bczyx</option> <option value="bcyx">bcyx</option> <option value="byxc">byxc</option> </param> </inputs> <outputs> <data format="tiff" name="output_predicted_image" from_work_dir="output_predicted_image.tiff" label="Predicted image"></data> <data format="npy" name="output_predicted_image_matrix" from_work_dir="output_predicted_image_matrix.npy" label="Predicted image tensor"></data> </outputs> <tests> <test> <param name="input_imaging_model" value="input_imaging_model.zip" location="https://zenodo.org/api/records/6647674/files/weights-torchscript.pt/content"/> <param name="input_image_file" value="input_image_file.tif" location="https://zenodo.org/api/records/6647674/files/sample_input_0.tif/content"/> <param name="input_image_input_size" value="256,256,1,1"/> <param name="input_image_input_axes" value="bcyx"/> <output name="output_predicted_image" ftype="tiff"> <assert_contents> <has_size size="524846" delta="110" /> </assert_contents> </output> <output name="output_predicted_image_matrix" ftype="npy"> <assert_contents> <has_size size="524416" delta="110" /> </assert_contents> </output> </test> <test> <param name="input_imaging_model" value="input_imaging_model.zip" location="https://zenodo.org/api/records/6647674/files/weights-torchscript.pt/content"/> <param name="input_image_file" value="input_nucleisegboundarymodel.png"/> <param name="input_image_input_size" value="256,256,1,1"/> <param name="input_image_input_axes" value="bcyx"/> <output name="output_predicted_image" ftype="tiff"> <assert_contents> <has_size size="524846" delta="110" /> </assert_contents> </output> <output name="output_predicted_image_matrix" ftype="npy"> <assert_contents> <has_size size="524416" delta="110" /> </assert_contents> </output> </test> <test> <param name="input_imaging_model" value="input_imaging_model.zip" location="https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/emotional-cricket/1.1/files/torchscript_tracing.pt"/> <param name="input_image_file" value="input_image_file.tif" location="https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/emotional-cricket/1.1/files/sample_input_0.tif"/> <param name="input_image_input_size" value="128,128,100,1"/> <param name="input_image_input_axes" value="bczyx"/> <output name="output_predicted_image" ftype="tiff"> <assert_contents> <has_size size="6572778" delta="100" /> </assert_contents> </output> <output name="output_predicted_image_matrix" ftype="npy"> <assert_contents> <has_size size="6572778" delta="100" /> </assert_contents> </output> </test> <test> <param name="input_imaging_model" value="input_imaging_model.zip" location="https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/emotional-cricket/1.1/files/torchscript_tracing.pt"/> <param name="input_image_file" value="input_3d-unet-arabidopsis-apical-stem-cells.png" location="https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/emotional-cricket/1.1/files/raw.png"/> <param name="input_image_input_size" value="128,128,100,1"/> <param name="input_image_input_axes" value="bczyx"/> <output name="output_predicted_image" ftype="tiff"> <assert_contents> <has_size size="6572778" delta="100" /> </assert_contents> </output> <output name="output_predicted_image_matrix" ftype="npy"> <assert_contents> <has_size size="6572778" delta="100" /> </assert_contents> </output> </test> <test> <param name="input_imaging_model" value="input_imaging_model.zip" location="https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/organized-badger/1/files/weights-torchscript.pt"/> <param name="input_image_file" value="input_platynereisemnucleisegmentationboundarymodel.tif" location="https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/organized-badger/1/files/sample_input_0.tif"/> <param name="input_image_input_size" value="256,256,32,1"/> <param name="input_image_input_axes" value="bczyx"/> <output name="output_predicted_image" ftype="tiff"> <assert_contents> <has_size size="16789714" delta="100" /> </assert_contents> </output> <output name="output_predicted_image_matrix" ftype="npy"> <assert_contents> <has_size size="16777344" delta="100" /> </assert_contents> </output> </test> <test> <param name="input_imaging_model" value="input_imaging_model.zip" location="https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/thoughtful-turtle/1/files/torchscript_tracing.pt"/> <param name="input_image_file" value="input_3d-unet-lateral-root-primordia-cells.tif" location="https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/thoughtful-turtle/1/files/sample_input_0.tif"/> <param name="input_image_input_size" value="128,128,100,1"/> <param name="input_image_input_axes" value="bczyx"/> <output name="output_predicted_image" ftype="tiff"> <assert_contents> <has_size size="6572778" delta="100" /> </assert_contents> </output> <output name="output_predicted_image_matrix" ftype="npy"> <assert_contents> <has_size size="6553728" delta="100" /> </assert_contents> </output> </test> </tests> <help> <![CDATA[ **What it does** The tool takes a BioImage.IO model and an image (as TIF or PNG) to be analyzed. The analysis is performed by the model. The model is used to obtain a prediction of the result of the analysis, and the predicted image becomes available as a TIF file in the Galaxy history. **Input files** - BioImage.IO model: Add one of the model from Galaxy file uploader by choosing a "remote" file at "ML Models/bioimaging-models" - Image to be analyzed: Provide an image as TIF/PNG file - Provide the necessary input size for the model. This information can be found in the RDF file of each model (RDF file > config > test_information > inputs > size) - Provide axes of input image. This information can also be found in the RDF file of each model (RDF file > inputs > axes). An example value of axes is 'bczyx' for 3D U-Net Arabidopsis Lateral Root Primordia model **Output files** - Predicted image: Predicted image using the BioImage.IO model - Predicted image matrix: Predicted image matrix in original dimensions ]]> </help> <citations> <citation type="doi">10.1145/3620665.3640366</citation> <citation type="doi">10.1101/2022.06.07.495102</citation> </citations> </tool>