Mercurial > repos > bcclaywell > argo_navis
view bin/plot_skyline_hist.R @ 0:d67268158946 draft
planemo upload commit a3f181f5f126803c654b3a66dd4e83a48f7e203b
author | bcclaywell |
---|---|
date | Mon, 12 Oct 2015 17:43:33 -0400 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env Rscript library(argparse) library(ggplot2) parser <- ArgumentParser() parser$add_argument('-b', '--brewer', help="Specify a color brewer pallete") parser$add_argument('-c', '--color-spec', help="Specify a deme -> color CSV mapping") parser$add_argument('-d', '--demes', help="For help with making colors consistent, always know what all the demes are") parser$add_argument('common') parser$add_argument('input', help="Skyline outputs") parser$add_argument('stats', help="Contains tmrca mean, which we use for cutting stats") parser$add_argument('output') args <- parser$parse_args() # Load shared library source(args$common) data <- read.csv(args$input, stringsAsFactors=F, sep="\t") stats.data <- read.csv(args$stats, stringsAsFactors=F, sep="\t") tmrca.mean <- subset(stats.data, statistic == "tmrca")$mean data <- subset(data, time > -tmrca.mean) data$statistic <- gsub("pro_(.*)", "\\1", data$statistic) deme.factor <- factorify.deme(data, label='statistic', args=args) data <- deme.factor$data deme.colors <- deme.factor$colors gg <- ggplot(data, aes(x=time, y=mean, fill=statistic)) gg <- gg + geom_bar(stat="identity") gg <- gg + scale_fill_manual(values=deme.colors, name="deme") gg <- gg + theme_bw() gg <- gg + xlab("evolutionary distance") gg <- gg + ylab("ancestral deme proportion") gg <- gg + labs(title="Skyline proportions histogram") ggsave(args$output, gg, width=7, height=4.3)