Mercurial > repos > artbio > small_rna_maps
diff small_rna_maps.py @ 1:615fa2171a34 draft
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/small_rna_maps commit c3d728b98db4987821feae40952d9797c97eaf5a"
author | artbio |
---|---|
date | Fri, 04 Oct 2019 04:33:08 -0400 |
parents | 0a06985c0894 |
children | 59d93aa7cc20 |
line wrap: on
line diff
--- a/small_rna_maps.py Tue Aug 22 12:06:58 2017 -0400 +++ b/small_rna_maps.py Fri Oct 04 04:33:08 2019 -0400 @@ -10,50 +10,166 @@ the_parser = argparse.ArgumentParser() the_parser.add_argument('--inputs', dest='inputs', required=True, nargs='+', help='list of input BAM files') + the_parser.add_argument('--minsize', dest='minsize', type=int, + default=19, help='minimal size of reads') + the_parser.add_argument('--maxsize', dest='maxsize', type=int, + default=29, help='maximal size of reads') + the_parser.add_argument('--cluster', dest='cluster', type=int, + default=0, help='clustering distance') the_parser.add_argument('--sample_names', dest='sample_names', required=True, nargs='+', help='list of sample names') + the_parser.add_argument('--bed', dest='bed', required=False, + help='Name of bed output must be specified\ + if --cluster option used') + the_parser.add_argument('--bed_skipsize', dest='bed_skipsize', + required=False, type=int, default=1, + help='Skip clusters of size equal or less than\ + specified integer in the bed output. \ + Default = 0, not skipping') + the_parser.add_argument('--bed_skipdensity', dest='bed_skipdensity', + required=False, type=float, default=0, + help='Skip clusters of density equal or less than\ + specified float number in the bed output. \ + Default = 0, not skipping') + the_parser.add_argument('--bed_skipcounts', dest='bed_skipcounts', + required=False, type=int, default=1, + help='Skip clusters of size equal or less than\ + specified integer in the bed output. \ + Default = 0, not skipping') the_parser.add_argument('--outputs', nargs='+', action='store', help='list of two output paths (only two)') the_parser.add_argument('-M', '--plot_methods', nargs='+', action='store', help='list of 2 plot methods (only two) among:\ Counts, Max, Mean, Median, Coverage and Size') + the_parser.add_argument('--nostrand', action='store_true', + help='Consider reads regardless their polarity') + args = the_parser.parse_args() return args class Map: - def __init__(self, bam_file, sample): + def __init__(self, bam_file, sample, minsize, maxsize, cluster, nostrand): self.sample_name = sample + self.minsize = minsize + self.maxsize = maxsize + self.cluster = cluster + if not nostrand: + self.nostrand = False + else: + self.nostrand = True self.bam_object = pysam.AlignmentFile(bam_file, 'rb') self.chromosomes = dict(zip(self.bam_object.references, self.bam_object.lengths)) - self.map_dict = self.create_map(self.bam_object) + self.map_dict = self.create_map(self.bam_object, self.nostrand) + if self.cluster: + self.map_dict = self.tile_map(self.map_dict, self.cluster) - def create_map(self, bam_object): + def create_map(self, bam_object, nostrand=False): ''' Returns a map_dictionary {(chromosome,read_position,polarity): [read_length, ...]} ''' map_dictionary = defaultdict(list) - # get empty value for start and end of each chromosome for chrom in self.chromosomes: + # get empty value for start and end of each chromosome map_dictionary[(chrom, 1, 'F')] = [] map_dictionary[(chrom, self.chromosomes[chrom], 'F')] = [] + if not nostrand: + for read in bam_object.fetch(chrom): + positions = read.positions # a list of covered positions + if read.is_reverse: + map_dictionary[(chrom, positions[-1]+1, 'R')].append( + read.query_alignment_length) + else: + map_dictionary[(chrom, positions[0]+1, 'F')].append( + read.query_alignment_length) + else: + for read in bam_object.fetch(chrom): + positions = read.positions # a list of covered positions + map_dictionary[(chrom, positions[0]+1, 'F')].append( + read.query_alignment_length) + return map_dictionary + + def grouper(self, iterable, clust_distance): + prev = None + group = [] + for item in iterable: + if not prev or item - prev <= clust_distance: + group.append(item) + else: + yield group + group = [item] + prev = item + if group: + yield group + + def tile_map(self, map_dic, clust_distance): + ''' + takes a map_dictionary {(chromosome,read_position,polarity): + [read_length, ...]} + and returns a map_dictionary with structure: + {(chromosome,read_position,polarity): + [*counts*, [start_clust, end_clust]]} + ''' + clustered_dic = defaultdict(list) for chrom in self.chromosomes: - for read in bam_object.fetch(chrom): - positions = read.positions # a list of covered positions - for pos in positions: - if not map_dictionary[(chrom, pos+1, 'F')]: - map_dictionary[(chrom, pos+1, 'F')] = [] - if read.is_reverse: - map_dictionary[(chrom, positions[-1]+1, - 'R')].append(read.query_alignment_length) - else: - map_dictionary[(chrom, positions[0]+1, - 'F')].append(read.query_alignment_length) - return map_dictionary + F_chrom_coord = [] + R_chrom_coord = [] + for key in map_dic: + if key[0] == chrom and key[2] == 'F': + F_chrom_coord.append(key[1]) + elif key[0] == chrom and key[2] == 'R': + R_chrom_coord.append(key[1]) + F_chrom_coord = list(set(F_chrom_coord)) + R_chrom_coord = list(set(R_chrom_coord)) + F_chrom_coord.sort() + R_chrom_coord.sort() + F_clust_values = [i for i in self.grouper(F_chrom_coord, + clust_distance)] + F_clust_keys = [(i[-1]+i[0])/2 for i in F_clust_values] + R_clust_values = [i for i in self.grouper(R_chrom_coord, + clust_distance)] + R_clust_keys = [(i[-1]+i[0])/2 for i in R_clust_values] + # now 2 dictionnaries (F and R) with structure: + # {centered_coordinate: [coord1, coord2, coord3, ..]} + F_clust_dic = dict(zip(F_clust_keys, F_clust_values)) + R_clust_dic = dict(zip(R_clust_keys, R_clust_values)) + for centcoor in F_clust_dic: + accumulator = [] + for coor in F_clust_dic[centcoor]: + accumulator.extend(map_dic[(chrom, coor, 'F')]) + ''' + compute the offset of the cluster due to + size of reads + ''' + last = sorted(F_clust_dic[centcoor])[-1] + try: + margin = max(map_dic[(chrom, last, 'F')]) - 1 + except ValueError: + margin = 0 + clustered_dic[(chrom, centcoor, 'F')] = [len(accumulator), [ + F_clust_dic[centcoor][0], + F_clust_dic[centcoor][-1] + margin]] + for centcoor in R_clust_dic: + accumulator = [] + for coor in R_clust_dic[centcoor]: + accumulator.extend(map_dic[(chrom, coor, 'R')]) + ''' + compute the offset of the cluster due to + size of reads + ''' + first = sorted(R_clust_dic[centcoor])[0] + try: + margin = max(map_dic[(chrom, first, 'R')]) - 1 + except ValueError: + margin = 0 + clustered_dic[(chrom, centcoor, 'R')] = [len(accumulator), [ + R_clust_dic[centcoor][0] - margin, + R_clust_dic[centcoor][-1]]] + return clustered_dic def compute_readcount(self, map_dictionary, out): ''' @@ -110,7 +226,7 @@ median_dictionary[key] = numpy.median(map_dictionary[key]) self.write_table(median_dictionary, out) - def compute_coverage(self, map_dictionary, out, quality=10): + def compute_coverage(self, map_dictionary, out, quality=15): ''' takes a map_dictionary as input and returns a coverage_dictionary {(chromosome,read_position,polarity): @@ -120,11 +236,16 @@ for chrom in self.chromosomes: coverage_dictionary[(chrom, 1, 'F')] = 0 coverage_dictionary[(chrom, self.chromosomes[chrom], 'F')] = 0 + for read in self.bam_object.fetch(chrom): + positions = read.positions # a list of covered positions + for pos in positions: + if not map_dictionary[(chrom, pos+1, 'F')]: + map_dictionary[(chrom, pos+1, 'F')] = [] for key in map_dictionary: coverage = self.bam_object.count_coverage( - reference=key[0], + contig=key[0], start=key[1]-1, - end=key[1], + stop=key[1], quality_threshold=quality) """ Add the 4 coverage values """ coverage = [sum(x) for x in zip(*coverage)] @@ -149,7 +270,7 @@ def write_table(self, mapdict, out): ''' - Generic writer + Writer of a tabular file Dataset, Chromosome, Chrom_length, Coordinate, Polarity, <some mapped value> out is an *open* file handler @@ -162,43 +283,117 @@ def write_size_table(self, sizedic, out): ''' - Generic writer of summary values - Dataset, Chromosome, Chrom_length, <some category>, <some value> + Writer of a tabular file + Dataset, Chromosome, Chrom_length, <category (size)>, <some value> + from a dictionary of sizes: {chrom: {polarity: {size: nbre of reads}}} out is an *open* file handler ''' for chrom in sorted(sizedic): - sizes = sizedic[chrom]['F'].keys() - sizes.extend(sizedic[chrom]['R'].keys()) + sizes = range(self.minsize, self.maxsize+1) + strandness = defaultdict(int) + sizeness = defaultdict(int) + for polarity in sizedic[chrom]: + for size in sizes: + strandness[polarity] += sizedic[chrom][polarity][size] + sizeness[size] += sizedic[chrom][polarity][size] + Strandbias = strandness['F'] + strandness['R'] + if Strandbias: + Strandbias = round(strandness['F'] / float(Strandbias), 2) + else: + Strandbias = 2 + Mean = numpy.mean(sizeness.values()) + StDev = numpy.std(sizeness.values()) + for size in sizeness: + if StDev: + sizeness[size] = (sizeness[size] - Mean) / StDev + else: + sizeness[size] = 0 for polarity in sorted(sizedic[chrom]): - for size in range(min(sizes), max(sizes)+1): + for size in sizes: try: line = [self.sample_name, chrom, polarity, size, - sizedic[chrom][polarity][size]] + sizedic[chrom][polarity][size], + Strandbias, round(sizeness[size], 3)] except KeyError: - line = [self.sample_name, chrom, polarity, size, 0] + line = [self.sample_name, chrom, polarity, size, 0, + Strandbias, round(sizeness[size], 3)] line = [str(i) for i in line] out.write('\t'.join(line) + '\n') + def write_cluster_table(self, clustered_dic, out, bedpath): + ''' + Writer of a tabular file + Dataset, Chromosome, Chrom_length, Coordinate, Polarity, + <some mapped value> + out is an *open* file handler + bed is an a file handler internal to the function + ''' + def filterCluster(size, count, density): + if size < args.bed_skipsize: + return False + if count < args.bed_skipcounts: + return False + if density <= args.bed_skipdensity: + return False + return True + bed = open(bedpath, 'w') + clusterid = 0 + for key in sorted(clustered_dic): + start = clustered_dic[key][1][0] + end = clustered_dic[key][1][1] + size = end - start + 1 + read_count = clustered_dic[key][0] + if self.nostrand: + polarity = '.' + elif key[2] == 'F': + polarity = '+' + else: + polarity = '-' + density = float(read_count) / size + line = [self.sample_name, key[0], self.chromosomes[key[0]], + key[1], key[2], read_count, + str(start) + "-" + str(end), str(size), str(density)] + line = [str(i) for i in line] + out.write('\t'.join(line) + '\n') + if filterCluster(size, read_count, density): + clusterid += 1 + name = 'cluster_' + str(clusterid) + bedline = [key[0], str(start-1), str(end), name, + str(read_count), polarity, str(density)] + bed.write('\t'.join(bedline) + '\n') + print("number of reported clusters:", clusterid) + bed.close() -def main(inputs, samples, methods, outputs): + +def main(inputs, samples, methods, outputs, minsize, maxsize, cluster, + nostrand, bedfile=None, bed_skipsize=0): for method, output in zip(methods, outputs): - F = open(output, 'w') + out = open(output, 'w') if method == 'Size': - header = ["Dataset", "Chromosome", "Polarity", method, "Count"] + header = ["# Dataset", "Chromosome", "Polarity", method, "Counts", + "Strandness", "z-score"] + elif cluster: + header = ["# Dataset", "Chromosome", "Chrom_length", "Coordinate", + "Polarity", method, "Start-End", "Cluster Size", + "density"] else: - header = ["Dataset", "Chromosome", "Chrom_length", "Coordinate", + header = ["# Dataset", "Chromosome", "Chrom_length", "Coordinate", "Polarity", method] - F.write('\t'.join(header) + '\n') + out.write('\t'.join(header) + '\n') for input, sample in zip(inputs, samples): - mapobj = Map(input, sample) + mapobj = Map(input, sample, minsize, maxsize, cluster, nostrand) token = {"Counts": mapobj.compute_readcount, "Max": mapobj.compute_max, "Mean": mapobj.compute_mean, "Median": mapobj.compute_median, "Coverage": mapobj.compute_coverage, - "Size": mapobj.compute_size} - token[method](mapobj.map_dict, F) - F.close() + "Size": mapobj.compute_size, + "cluster": mapobj.write_cluster_table} + if cluster: + token["cluster"](mapobj.map_dict, out, bedfile) + else: + token[method](mapobj.map_dict, out) + out.close() if __name__ == "__main__": @@ -207,4 +402,5 @@ if len(set(args.sample_names)) != len(args.sample_names): args.sample_names = [name + '_' + str(i) for i, name in enumerate(args.sample_names)] - main(args.inputs, args.sample_names, args.plot_methods, args.outputs) + main(args.inputs, args.sample_names, args.plot_methods, args.outputs, + args.minsize, args.maxsize, args.cluster, args.nostrand, args.bed)