Mercurial > repos > artbio > small_rna_map
view small_rna_map.r @ 1:2299eb1e7c93 draft
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/small_rna_map commit d0362e589eb42377b7f10dfcec78be0288220755
author | artbio |
---|---|
date | Tue, 11 Jul 2017 09:01:19 -0400 |
parents | 1ad5d040f85f |
children | 7feee0446c5c |
line wrap: on
line source
library(optparse) library(ggplot2) library(gridExtra) library(RColorBrewer) library(gtable) library(grid) option_list <- list( make_option(c("-r", "--output_tab"), type="character", help="path to tabular file"), make_option("--output_pdf", type = "character", help="path to the pdf file with plot") ) parser <- OptionParser(usage = "%prog [options] file", option_list = option_list) args = parse_args(parser) theme_set(theme_bw()) #a theme with a white background Table = read.delim(args$output_tab, header=T, row.names=NULL) Table <- within(Table, Nbr_reads[Polarity=="R"] <- (Nbr_reads[Polarity=="R"]*-1)) #To assign colors to categorical variables in ggplot2 that have stable mapping myColors <- brewer.pal(3,"Set1") names(myColors) <- levels(Table$Polarity) colScale <- scale_colour_manual(name = "Polarity",values = myColors) #Make initial figures p <- ggplot(Table, aes(x=Coordinate, y=Nbr_reads, colour=Polarity)) + colScale+ geom_segment(aes(y = 0, x = Coordinate, yend = Nbr_reads, xend = Coordinate, color=Polarity), alpha=1 ) + geom_segment(aes(y = Nbr_reads, x = 0, yend=Nbr_reads, xend=Chrom_length), alpha=0 )+ facet_wrap(Dataset~Chromosome, scales="free", nrow=1, labeller = label_wrap_gen(multi_line = FALSE))+ scale_y_continuous(breaks = function(x) round(pretty(seq(-(max(x) + 1), (max(x) + 1)))))+#to display only integer values on y axis geom_hline(yintercept=0, size=0.3)+ theme(strip.text = element_text(size = 6, lineheight = 0.1), #specify strip size panel.grid.major = element_line(colour = "#ffffff"),#conceal major grid lines panel.grid.minor = element_line(colour = "#ffffff"),#conceal minor grid lines axis.title = element_blank(),# Conceal axis titles axis.text = element_text(size = 6),#modify the size of tick labels along axes legend.position = "none") # Hide the repeate caption # Create legend mylegend <- legendGrob(c("F", "R", "Median", "Mean"), pch=22, gp=gpar(col = c("red","blue","black","yellow"), fill = c("red","blue","black","yellow"))) # The second plot cols<- c("Median"="#000000", "Mean"="#fffa00") p2 <- ggplot(Table, aes(x = Coordinate, group=1)) + geom_point(aes(y=Median, colour="Median"), alpha=1, size = 1) + geom_point(aes(y=Mean, colour="Mean"), alpha= 0.3, size = 1.2)+ scale_colour_manual(name="", values=cols)+ expand_limits(y = seq(0,max(Table$Median),by=5)) + facet_wrap(Dataset~Chromosome, scales="free", nrow=1, labeller = label_wrap_gen(multi_line = FALSE))+ geom_segment(aes(y = Nbr_reads, x = 0, yend=Nbr_reads, xend=Chrom_length), alpha=0 )+ scale_y_continuous(limits = c(0,max(Table$Median)), position = "right")+ theme(strip.text = element_text(size = 6, lineheight = 0.1), panel.background = element_rect(fill = NA), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_rect(fill = NA, colour = "grey50"), axis.text = element_text(size = 6), legend.position = "none" ) # Transforme ggplot graphs on list of graphs plot.list1 <- by(data = Table, INDICES = c(Table$Chromosome), simplify = TRUE, FUN = function(x) { p %+% x }) plot.list2 <- by(data = Table, INDICES = c(Table$Chromosome), simplify = TRUE, FUN = function(x) { p2 %+% x }) # A function to get the original tick mark length plot_theme <- function(p) { plyr::defaults(p$theme, theme_get()) } # ggplot contains many labels that are themselves complex grob; # usually a text grob surrounded by margins. # When moving the grobs from, say, the left to the right of a plot, # Make sure the margins and the justifications are swapped around. # The function below does the swapping. # Taken from the cowplot package: # https://github.com/wilkelab/cowplot/blob/master/R/switch_axis.R hinvert_title_grob <- function(grob){ # Swap the widths widths <- grob$widths grob$widths[1] <- widths[3] grob$widths[3] <- widths[1] grob$vp[[1]]$layout$widths[1] <- widths[3] grob$vp[[1]]$layout$widths[3] <- widths[1] # Fix the justification grob$children[[1]]$hjust <- 1 - grob$children[[1]]$hjust grob$children[[1]]$vjust <- 1 - grob$children[[1]]$vjust grob$children[[1]]$x <- unit(1, "npc") - grob$children[[1]]$x grob } dual_axis <- function(v1,v2){ # Get the ggplot grobs g1 <- ggplot_gtable(ggplot_build(v1)) g2 <- ggplot_gtable(ggplot_build(v2)) # Get the locations of the plot panels in g1. pp <- c(subset(g1$layout, grepl("panel", g1$layout$name), se = t:r)) # Overlap panels for second plot on those of the first plot g <- gtable_add_grob(g1, g2$grobs[grepl("panel", g1$layout$name)], pp$t, pp$l, pp$b, pp$l) # Get the y axis from g2 (axis line, tick marks, and tick mark labels) index <- which(g2$layout$name == "axis-r-1-1") # Which grob. yaxis <- g2$grobs[[index]] # Extract the grob ticks <- yaxis$children[[2]] # swap tick marks and tick mark labels # Move the tick marks, Tick mark lengths can change. tml <- plot_theme(p)$axis.ticks.length # Tick mark length ticks$grobs[[1]]$x <- ticks$grobs[[1]]$x - unit(1, "npc") + tml # Swap margins and fix justifications for the tick mark labels ticks$grobs[[2]] <- hinvert_title_grob(ticks$grobs[[2]]) # Put ticks back into yaxis yaxis$children[[2]] <- ticks # Put the transformed yaxis on the right side of g1 g <- gtable_add_cols(g, g2$widths[g2$layout[index, ]$l], max(pp$r)) g <- gtable_add_grob(g, yaxis, max(pp$t), max(pp$r) + 1, max(pp$b), max(pp$r) + 1, clip = "off") } plots <- list() len = length(plot.list1) for(i in 1:len ) {plots[[i]] <- dual_axis(plot.list1[[i]],plot.list2[[i]])} # Plotting in multiple pages with different rows multi.plot<-do.call(marrangeGrob,list(grobs=plots,ncol=1,nrow=8,top=NULL, bottom="Coordinates(nt)", left="Number of reads", right= mylegend)) ggsave(args$output_pdf, device="pdf", plot=multi.plot, height=11.69, width=8.2)