Mercurial > repos > artbio > mutational_patterns
diff mutational_patterns.R @ 0:d585f369bfad draft
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/mutational_patterns commit 518fb067e8206ecafbf673a5e4cf375ccead11e3"
author | artbio |
---|---|
date | Fri, 04 Jun 2021 22:35:17 +0000 |
parents | |
children | c73aa7cc4c4b |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mutational_patterns.R Fri Jun 04 22:35:17 2021 +0000 @@ -0,0 +1,422 @@ +# load packages that are provided in the conda env +options(show.error.messages = F, + error = function() { + cat(geterrmessage(), file = stderr()); q("no", 1, F) + } + ) +loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") +warnings() +library(optparse) +library(rjson) +library(grid) +library(gridExtra) +library(scales) +library(RColorBrewer) + +# Arguments +option_list <- list( + make_option( + "--inputs", + default = NA, + type = "character", + help = "json formatted dictionary of datasets and their paths" + ), + make_option( + "--genome", + default = NA, + type = "character", + help = "genome name in the BSgenome bioconductor package" + ), + make_option( + "--levels", + default = NA, + type = "character", + help = "path to the tab separated file describing the levels in function of datasets" + ), + make_option( + "--cosmic_version", + default = "v2", + type = "character", + help = "Version of the Cosmic Signature set to be used to express mutational patterns" + ), + make_option( + "--signum", + default = 2, + type = "integer", + help = "selects the N most significant signatures in samples to express mutational patterns" + ), + make_option( + "--nrun", + default = 2, + type = "integer", + help = "Number of runs to fit signatures" + ), + make_option( + "--rank", + default = 2, + type = "integer", + help = "number of ranks to display for parameter optimization" + ), + make_option( + "--newsignum", + default = 2, + type = "integer", + help = "Number of new signatures to be captured" + ), + make_option( + "--output_spectrum", + default = NA, + type = "character", + help = "path to output dataset" + ), + make_option( + "--output_denovo", + default = NA, + type = "character", + help = "path to output dataset" + ), + make_option( + "--sigmatrix", + default = NA, + type = "character", + help = "path to signature matrix" + ), + make_option( + "--output_cosmic", + default = NA, + type = "character", + help = "path to output dataset" + ), + make_option( + "--sig_contrib_matrix", + default = NA, + type = "character", + help = "path to signature contribution matrix" + ), + make_option( + c("-r", "--rdata"), + type = "character", + default = NULL, + help = "Path to RData output file") +) + +opt <- parse_args(OptionParser(option_list = option_list), + args = commandArgs(trailingOnly = TRUE)) + +################ Manage input data #################### +json_dict <- opt$inputs +parser <- newJSONParser() +parser$addData(json_dict) +fileslist <- parser$getObject() +vcf_paths <- attr(fileslist, "names") +element_identifiers <- unname(unlist(fileslist)) +ref_genome <- opt$genome +vcf_table <- data.frame(element_identifier = as.character(element_identifiers), path = vcf_paths) + +library(MutationalPatterns) +library(ref_genome, character.only = TRUE) +library(ggplot2) + +# Load the VCF files into a GRangesList: +vcfs <- read_vcfs_as_granges(vcf_paths, element_identifiers, ref_genome) +library(plyr) +if (!is.na(opt$levels)[1]) { # manage levels if there are + levels_table <- read.delim(opt$levels, header = FALSE, + col.names = c("element_identifier", "level")) + } else { + levels_table <- data.frame(element_identifier = vcf_table$element_identifier, + level = rep("nolabels", length(vcf_table$element_identifier))) +} +metadata_table <- join(vcf_table, levels_table, by = "element_identifier") +tissue <- as.vector(metadata_table$level) +detach(package:plyr) + +##### This is done for any section ###### +mut_mat <- mut_matrix(vcf_list = vcfs, ref_genome = ref_genome) +qual_col_pals <- brewer.pal.info[brewer.pal.info$category == "qual", ] +col_vector <- unique(unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))) +col_vector <- col_vector[c(-32, -34, -39)] # 67-color palette + +###### Section 1 Mutation characteristics and spectrums ############# +if (!is.na(opt$output_spectrum)[1]) { + pdf(opt$output_spectrum, paper = "special", width = 11.69, height = 11.69) + type_occurrences <- mut_type_occurrences(vcfs, ref_genome) + + # mutation spectrum, total or by sample + + if (length(levels(factor(levels_table$level))) == 1) { + p1 <- plot_spectrum(type_occurrences, CT = TRUE, legend = TRUE) + plot(p1) + } else { + p2 <- plot_spectrum(type_occurrences, by = tissue, CT = TRUE) # by levels + p3 <- plot_spectrum(type_occurrences, CT = TRUE, legend = TRUE) # total + grid.arrange(p2, p3, ncol = 2, widths = c(4, 2.3), heights = c(4, 1)) + } + plot_96_profile(mut_mat, condensed = TRUE) + dev.off() +} + +###### Section 2: De novo mutational signature extraction using NMF ####### +# opt$rank cannot be higher than the number of samples and +# likewise, opt$signum cannot be higher thant the number of samples +if (!is.na(opt$output_denovo)[1]) { + + if (opt$rank > length(element_identifiers)) { + opt$rank <- length(element_identifiers) + } + if (opt$signum > length(element_identifiers)) { + opt$signum <- length(element_identifiers) + } + pseudo_mut_mat <- mut_mat + 0.0001 # First add a small pseudocount to the mutation count matrix + # Use the NMF package to generate an estimate rank plot + library("NMF") + estimate <- nmf(pseudo_mut_mat, rank = 1:opt$rank, method = "brunet", nrun = opt$nrun, seed = 123456) + # And plot it + pdf(opt$output_denovo, paper = "special", width = 11.69, height = 11.69) + p4 <- plot(estimate) + grid.arrange(p4) + # Extract 4 (PARAMETIZE) mutational signatures from the mutation count matrix with extract_signatures + # (For larger datasets it is wise to perform more iterations by changing the nrun parameter + # to achieve stability and avoid local minima) + nmf_res <- extract_signatures(pseudo_mut_mat, rank = opt$newsignum, nrun = opt$nrun) + # Assign signature names + colnames(nmf_res$signatures) <- paste0("NewSig_", 1:opt$newsignum) + rownames(nmf_res$contribution) <- paste0("NewSig_", 1:opt$newsignum) + # Plot the 96-profile of the signatures: + p5 <- plot_96_profile(nmf_res$signatures, condensed = TRUE) + new_sig_matrix <- reshape2::dcast(p5$data, substitution + context ~ variable, value.var = "value") + new_sig_matrix <- format(new_sig_matrix, scientific = TRUE) + write.table(new_sig_matrix, file = opt$sigmatrix, quote = FALSE, row.names = FALSE, sep = "\t") + grid.arrange(p5) + # Visualize the contribution of the signatures in a barplot + pc1 <- plot_contribution(nmf_res$contribution, nmf_res$signature, mode = "relative", coord_flip = TRUE) + # Visualize the contribution of the signatures in absolute number of mutations + pc2 <- plot_contribution(nmf_res$contribution, nmf_res$signature, mode = "absolute", coord_flip = TRUE) + # Combine the two plots: + grid.arrange(pc1, pc2) + + # The relative contribution of each signature for each sample can also be plotted as a heatmap with + # plot_contribution_heatmap, which might be easier to interpret and compare than stacked barplots. + # The samples can be hierarchically clustered based on their euclidean dis- tance. The signatures + # can be plotted in a user-specified order. + # Plot signature contribution as a heatmap with sample clustering dendrogram and a specified signature order: + pch1 <- plot_contribution_heatmap(nmf_res$contribution, + sig_order = paste0("NewSig_", 1:opt$newsignum)) + # Plot signature contribution as a heatmap without sample clustering: + pch2 <- plot_contribution_heatmap(nmf_res$contribution, cluster_samples = FALSE) + #Combine the plots into one figure: + grid.arrange(pch1, pch2, ncol = 2, widths = c(2, 1.6)) + + # Compare the reconstructed mutational profile with the original mutational profile: + plot_compare_profiles(pseudo_mut_mat[, 1], + nmf_res$reconstructed[, 1], + profile_names = c("Original", "Reconstructed"), + condensed = TRUE) + dev.off() + } +##### Section 3: Find optimal contribution of known signatures: COSMIC mutational signatures #### + +if (!is.na(opt$output_cosmic)[1]) { + pdf(opt$output_cosmic, paper = "special", width = 11.69, height = 11.69) + pseudo_mut_mat <- mut_mat + 0.0001 # First add a small psuedocount to the mutation count matrix + if (opt$cosmic_version == "v2") { + sp_url <- paste("https://cancer.sanger.ac.uk/cancergenome/assets/", "signatures_probabilities.txt", sep = "") + cancer_signatures <- read.table(sp_url, sep = "\t", header = TRUE) + new_order <- match(row.names(pseudo_mut_mat), cancer_signatures$Somatic.Mutation.Type) + cancer_signatures <- cancer_signatures[as.vector(new_order), ] + row.names(cancer_signatures) <- cancer_signatures$Somatic.Mutation.Type + cancer_signatures <- as.matrix(cancer_signatures[, 4:33]) + colnames(cancer_signatures) <- gsub("Signature.", "", colnames(cancer_signatures)) # shorten signature labels + cosmic_tag <- "Signatures (Cosmic v2, March 2015)" + cosmic_colors <- col_vector[1:30] + } else { + sp_url <- "https://raw.githubusercontent.com/ARTbio/startbio/master/sigProfiler_SBS_signatures_2019_05_22.tsv" + cancer_signatures <- read.table(sp_url, sep = "\t", header = TRUE) + new_order <- match(row.names(pseudo_mut_mat), cancer_signatures$Somatic.Mutation.Type) + cancer_signatures <- cancer_signatures[as.vector(new_order), ] + row.names(cancer_signatures) <- cancer_signatures$Somatic.Mutation.Type + cancer_signatures <- as.matrix(cancer_signatures[, 4:70]) + colnames(cancer_signatures) <- gsub("SBS", "", colnames(cancer_signatures)) # shorten signature labels + cosmic_tag <- "Signatures (Cosmic v3, May 2019)" + cosmic_colors <- col_vector[1:67] + } + + # Plot mutational profiles of the COSMIC signatures + if (opt$cosmic_version == "v2") { + p6 <- plot_96_profile(cancer_signatures, condensed = TRUE, ymax = 0.3) + grid.arrange(p6, top = textGrob("COSMIC signature profiles", gp = gpar(fontsize = 12, font = 3))) + } else { + p6 <- plot_96_profile(cancer_signatures[, 1:33], condensed = TRUE, ymax = 0.3) + p6bis <- plot_96_profile(cancer_signatures[, 34:67], condensed = TRUE, ymax = 0.3) + grid.arrange(p6, top = textGrob("COSMIC signature profiles (on two pages)", + gp = gpar(fontsize = 12, font = 3))) + grid.arrange(p6bis, top = textGrob("COSMIC signature profiles (continued)", + gp = gpar(fontsize = 12, font = 3))) + } + + + # Find optimal contribution of COSMIC signatures to reconstruct 96 mutational profiles + fit_res <- fit_to_signatures(pseudo_mut_mat, cancer_signatures) + + # Plot contribution barplots + pc3 <- plot_contribution(fit_res$contribution, cancer_signatures, coord_flip = T, mode = "absolute") + pc4 <- plot_contribution(fit_res$contribution, cancer_signatures, coord_flip = T, mode = "relative") + pc3_data <- pc3$data + pc3 <- ggplot(pc3_data, aes(x = Sample, y = Contribution, fill = as.factor(Signature))) + + geom_bar(stat = "identity", position = "stack") + + coord_flip() + + scale_fill_manual(name = "Cosmic\nSignatures", values = cosmic_colors) + + labs(x = "Samples", y = "Absolute contribution") + theme_bw() + + theme(panel.grid.minor.x = element_blank(), + panel.grid.major.x = element_blank(), + legend.position = "right", + text = element_text(size = 8), + axis.text.x = element_text(angle = 90, hjust = 1)) + pc4_data <- pc4$data + pc4 <- ggplot(pc4_data, aes(x = Sample, y = Contribution, fill = as.factor(Signature))) + + geom_bar(stat = "identity", position = "fill") + + coord_flip() + + scale_fill_manual(name = "Cosmic\nSignatures", values = cosmic_colors) + + scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + + labs(x = "Samples", y = "Relative contribution") + theme_bw() + + theme(panel.grid.minor.x = element_blank(), panel.grid.major.x = element_blank(), legend.position = "right", + text = element_text(size = 8), + axis.text.x = element_text(angle = 90, hjust = 1)) + ##### + # ggplot2 alternative + if (!is.na(opt$levels)[1]) { # if there are levels to display in graphs + pc3_data <- pc3$data + pc3_data <- merge(pc3_data, metadata_table[, c(1, 3)], by.x = "Sample", by.y = "element_identifier") + pc3 <- ggplot(pc3_data, aes(x = Sample, y = Contribution, fill = as.factor(Signature))) + + geom_bar(stat = "identity", position = "stack") + + scale_fill_manual(name = "Cosmic\nSignatures", values = cosmic_colors) + + labs(x = "Samples", y = "Absolute contribution") + theme_bw() + + theme(panel.grid.minor.x = element_blank(), + panel.grid.major.x = element_blank(), + legend.position = "right", + text = element_text(size = 8), + axis.text.x = element_text(angle = 90, hjust = 1)) + + facet_grid(~level, scales = "free_x", space = "free") + pc4_data <- pc4$data + pc4_data <- merge(pc4_data, metadata_table[, c(1, 3)], by.x = "Sample", by.y = "element_identifier") + pc4 <- ggplot(pc4_data, aes(x = Sample, y = Contribution, fill = as.factor(Signature))) + + geom_bar(stat = "identity", position = "fill") + + scale_fill_manual(name = "Cosmic\nSignatures", values = cosmic_colors) + + scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + + labs(x = "Samples", y = "Relative contribution") + theme_bw() + + theme(panel.grid.minor.x = element_blank(), + panel.grid.major.x = element_blank(), + legend.position = "right", + text = element_text(size = 8), + axis.text.x = element_text(angle = 90, hjust = 1)) + + facet_grid(~level, scales = "free_x", space = "free") + } + # Combine the two plots: + grid.arrange(pc3, pc4, + top = textGrob("Absolute and Relative Contributions of Cosmic signatures to mutational patterns", + gp = gpar(fontsize = 12, font = 3))) + + #### pie charts of comic signatures contributions in samples ### + library(reshape2) + library(dplyr) + if (length(levels(factor(levels_table$level))) < 2) { + fit_res_contrib <- as.data.frame(fit_res$contribution) + worklist <- cbind(signature = rownames(fit_res$contribution), + level = rep("nolabels", length(fit_res_contrib[, 1])), + fit_res_contrib, + sum = rowSums(fit_res_contrib)) + worklist <- worklist[order(worklist[, "sum"], decreasing = T), ] + worklist <- worklist[1:opt$signum, ] + worklist <- worklist[, -length(worklist[1, ])] + worklist <- melt(worklist) + worklist <- worklist[, c(1, 3, 4, 2)] + } else { + worklist <- list() + for (i in levels(factor(levels_table$level))) { + fit_res$contribution[, levels_table$element_identifier[levels_table$level == i]] -> worklist[[i]] + sum <- rowSums(as.data.frame(worklist[[i]])) + worklist[[i]] <- cbind(worklist[[i]], sum) + worklist[[i]] <- worklist[[i]][order(worklist[[i]][, "sum"], decreasing = T), ] + worklist[[i]] <- worklist[[i]][1:opt$signum, ] + worklist[[i]] <- worklist[[i]][, -length(as.data.frame(worklist[[i]]))] + } + worklist <- as.data.frame(melt(worklist)) + worklist[, 2] <- paste0(worklist[, 4], " - ", worklist[, 2]) + head(worklist) + } + + colnames(worklist) <- c("signature", "sample", "value", "level") + worklist <- as.data.frame(worklist %>% group_by(sample) %>% mutate(value = value / sum(value) * 100)) + worklist$pos <- cumsum(worklist$value) - worklist$value / 2 + worklist$label <- factor(worklist$signature) + worklist$signature <- factor(worklist$signature) + p7 <- ggplot(worklist, aes(x = "", y = value, group = signature, fill = signature)) + + geom_bar(width = 1, stat = "identity") + + geom_text(aes(label = label), position = position_stack(vjust = 0.5), color = "black", size = 3) + + coord_polar("y", start = 0) + facet_wrap(.~sample) + + labs(x = "", y = "Samples", fill = cosmic_tag) + + scale_fill_manual(name = paste0(opt$signum, " most contributing\nsignatures\n(in each label/tissue)"), + values = cosmic_colors[as.numeric(levels(factor(worklist$label)))]) + + theme(axis.text = element_blank(), + axis.ticks = element_blank(), + panel.grid = element_blank()) + grid.arrange(p7) + + # Plot relative contribution of the cancer signatures in each sample as a heatmap with sample clustering + if (length(vcf_paths) > 1) { + p8 <- plot_contribution_heatmap(fit_res$contribution, cluster_samples = TRUE, method = "complete") + grid.arrange(p8) + } + + # export relative contribution matrix + if (!is.na(opt$sig_contrib_matrix)) { + output_table <- t(fit_res$contribution) / rowSums(t(fit_res$contribution)) + colnames(output_table) <- paste0("s", colnames(output_table)) + if (length(levels(factor(levels_table$level))) > 1) { + output_table <- data.frame(sample = paste0(metadata_table[metadata_table$element_identifier == colnames(fit_res$contribution), + 3], "-", colnames(fit_res$contribution)), + output_table) + } else { + output_table <- data.frame(sample = rownames(output_table), output_table) + } + write.table(output_table, file = opt$sig_contrib_matrix, sep = "\t", quote = F, row.names = F) + } + + # calculate all pairwise cosine similarities + cos_sim_ori_rec <- cos_sim_matrix(pseudo_mut_mat, fit_res$reconstructed) + # extract cosine similarities per sample between original and reconstructed + cos_sim_ori_rec <- as.data.frame(diag(cos_sim_ori_rec)) + + # We can use ggplot to make a barplot of the cosine similarities between the original and + # reconstructed mutational profile of each sample. This clearly shows how well each mutational + # profile can be reconstructed with the COSMIC mutational signatures. Two identical profiles + # have a cosine similarity of 1. The lower the cosine similarity between original and + # reconstructed, the less well the original mutational profile can be reconstructed with + # the COSMIC signatures. You could use, for example, cosine similarity of 0.95 as a cutoff. + + # Adjust data frame for plotting with gpplot + colnames(cos_sim_ori_rec) <- "cos_sim" + cos_sim_ori_rec$sample <- row.names(cos_sim_ori_rec) + # Make barplot + p9 <- ggplot(cos_sim_ori_rec, aes(y = cos_sim, x = sample)) + + geom_bar(stat = "identity", fill = "skyblue4") + + coord_cartesian(ylim = c(0.8, 1)) + + # coord_flip(ylim=c(0.8,1)) + + ylab("Cosine similarity\n original VS reconstructed") + + xlab("") + + # Reverse order of the samples such that first is up + # xlim(rev(levels(factor(cos_sim_ori_rec$sample)))) + + theme_bw() + + theme(panel.grid.minor.y = element_blank(), + panel.grid.major.y = element_blank()) + + # Add cut.off line + geom_hline(aes(yintercept = .95)) + grid.arrange(p9, top = textGrob("Similarity between true and reconstructed profiles (with all Cosmic sig.)", gp = gpar(fontsize = 12, font = 3))) + dev.off() +} + + +# Output RData file +if (!is.null(opt$rdata)) { + save.image(file = opt$rdata) +}