Mercurial > repos > agpetit > calculate_diameter
view visualize_pore_diameter_aqp.R @ 7:f1dd5d99ea2d draft
"planemo upload for repository https://github.com/mesocentre-clermont-auvergne/aubi_piaf commit b6488400d4478d46697019485e912c38ea2202a5-dirty"
author | agpetit |
---|---|
date | Mon, 30 May 2022 15:35:48 +0000 |
parents | c574ada16e76 |
children | e5cf7698a2af |
line wrap: on
line source
#!/usr/bin/env Rscript # install and/or load necessary packages useful_packages <- c("conflicted", "getopt", "tidyverse", "ggplot2", "ggpubr") uninstalled_packages <- setdiff(useful_packages, rownames(installed.packages())) invisible(lapply(useful_packages, require, character.only = TRUE, warn.conflicts = TRUE, quietly = TRUE)) spec <- matrix(c( "input_file", "i", 1, "character", "aqp_distribution", "a", 2, "logical", "protomer_distribution", "p", 2, "logical", "all_distribution", "d", 2, "logical", "pdf", "f", 2, "logical" ), byrow = TRUE, ncol = 4) opt <- getopt(spec) if (is.null(opt$input_file)) { print("A file containing an array must be given as input with the -f argument") quit(status = 1) } if (is.null(opt$aqp_distribution)) { opt$aqp_distribution <- TRUE } if (is.null(opt$protomer_distribution)) { opt$protomer_distribution <- TRUE } if (is.null(opt$all_distribution)) { opt$all_distribution <- TRUE } if (is.null(opt$pdf)) { opt$pdf <- TRUE } tibble_sort <- read.delim(opt$input_file) tibble_sort <- as_tibble(tibble_sort) colnames(tibble_sort) <- colnames(tibble_sort) %>% as_tibble() %>% mutate(value = str_replace_all(value, "\\.", "_"), value = gsub("_+Angstroms_", "", value), value = str_replace(value, "Time__ps_", "time"), value = str_replace(value, "_", "."), value = str_replace(value, "_", ".")) %>% unlist() tibble_sort$time <- as.numeric(gsub("-[0-9]+.[0-9]+", "", tibble_sort$time)) tibble_sort_mean <- tibble_sort[, 1:9] tibble_sort_std <- tibble_sort[, c(1, 10:17)] colnames(tibble_sort_mean) <- gsub("_mean", "", colnames(tibble_sort_mean)) colnames(tibble_sort_std) <- gsub("_std", "", colnames(tibble_sort_std)) tibble_sort_mean_long <- tibble_sort_mean %>% pivot_longer(cols = contains("AQP"), values_to = "distance") %>% separate(name, into = c("aqp", "protomer", "Couple"), sep = "[.]") %>% mutate(protomer = str_replace(protomer, "P", "Protomer ")) tibble_sort_std_long <- tibble_sort_std %>% pivot_longer(cols = contains("AQP"), values_to = "distance") %>% separate(name, into = c("aqp", "protomer", "Couple"), sep = "[.]") %>% mutate(protomer = str_replace(protomer, "P", "Protomer ")) create_ggplot <- function(tibble_mean, tibble_std, group, color, wrap, title) { tibble_mean_distance <- tibble_mean %>% group_by_at(group) %>% summarise(mean_distance = (mean(distance))) tibble_std_distance <- tibble_std %>% group_by_at(group) %>% summarise(std_distance = (mean(distance))) tibble_mean_std_distance <- inner_join(tibble_mean_distance, tibble_std_distance, by = group) g_distribution <- ggplot(tibble_mean_std_distance, aes(x = time / 1000, y = mean_distance)) + geom_line(aes(color = .data[[color]])) + geom_ribbon(aes(ymin = mean_distance - std_distance, ymax = mean_distance + std_distance, fill = .data[[color]]), alpha = 0.3) + facet_wrap(wrap) + theme(legend.position = "top") + guides(color = "none", fill = "none") + ggtitle(label = title, subtitle = "The envelope represents the standard deviation") + ylab(label = "ArR-ArR distance (Ångströms)") + xlab(label = "Time (ns)") return(g_distribution) } list_ggplot <- list() if (opt$aqp_distribution == TRUE) { group_aqp <- c("time", "aqp") color_aqp <- "aqp" wrap_aqp <- c("aqp") title_aqp <- "Average distance ArR-ArR by AQP (4 protomers)" g_aqp_distribution <- create_ggplot(tibble_sort_mean_long, tibble_sort_std_long, group_aqp, color_aqp, wrap_aqp, title_aqp) ggsave("Distance_distribution_by_aquaporin.png", g_aqp_distribution, width = 20, height = 18, units = "cm") list_ggplot[[1]] <- g_aqp_distribution } if (opt$protomer_distribution == TRUE) { group_protomer <- c("time", "protomer") color_protomer <- "protomer" wrap_protomer <- c("protomer") title_protomer <- "Average distance ArR-ArR by by protomer (2 aquaporins)" g_protomer_distribution <- create_ggplot(tibble_sort_mean_long, tibble_sort_std_long, group_protomer, color_protomer, wrap_protomer, title_protomer) ggsave("Distance_distribution_by_protomer.png", g_protomer_distribution, width = 20, height = 18, units = "cm") list_ggplot[[2]] <- g_protomer_distribution } if (opt$all_distribution == TRUE) { group_all <- c("time", "aqp", "protomer") color_all <- "protomer" wrap_all <- c("aqp", "protomer") title_all <- "Average distance ArR-ArR by protomer anq AQP" g_all_distribution <- create_ggplot(tibble_sort_mean_long, tibble_sort_std_long, group_all, color_all, wrap_all, title_all) ggsave("Distance_distribution_on_all_protomers.png", g_all_distribution, width = 20, height = 18, units = "cm") list_ggplot[[3]] <- g_all_distribution } if (opt$pdf == TRUE) { ggexport(list_ggplot, filename = "all_graphics_distribution.pdf") }