diff scripts/S01b_study_seq_composition_aa.py @ 0:78dd6454f6f0 draft

planemo upload for repository htpps://github.com/abims-sbr/adaptearch commit 73670b26c75bb6c1a6332481920f3036314de364
author abims-sbr
date Tue, 02 May 2017 04:20:51 -0400
parents
children 8de21b6eb110
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/scripts/S01b_study_seq_composition_aa.py	Tue May 02 04:20:51 2017 -0400
@@ -0,0 +1,625 @@
+#!/usr/bin/env python
+# -*- coding: ascii -*-
+## Author: Eric FONTANILLAS
+## Date: 21.12.10
+## Object: Test for compositional bias in genome and proteome as marker of thermal adaptation (comparison between 2 "hot" species: Ap and Ps and two "cold" species: Pg, Pp)
+import sys, os
+script_path = os.path.dirname(sys.argv[0])
+
+#############
+### DEF 0 ###
+#############
+def simplify_fasta_name(fasta_name,LT):
+
+    for abbreviation in LT:
+        if abbreviation in fasta_name:
+            new_fasta_name = abbreviation
+
+    return(new_fasta_name)
+##########################################
+
+###########
+## DEF1 ##
+###########
+## Generates bash, with key = fasta name; value = sequence (WITH GAP, IF ANY, REMOVED IN THIS FUNCTION)
+
+def dico(fasta_file,LT):
+
+    count_fastaName=0
+    F1 = open(fasta_file, "r")
+    
+    bash1 = {}
+    while 1:
+        nextline = F1.readline()
+        #print nextline
+        if not nextline :
+            break
+        
+        if nextline[0] == ">":
+            count_fastaName = count_fastaName + 1
+            fasta_name = nextline[1:-1]
+            nextline = F1.readline()
+            sequence = nextline[:-1]
+            
+            if fasta_name not in bash1.keys():
+                fasta_name = simplify_fasta_name(fasta_name,LT)  ### DEF 0 ###
+                bash1[fasta_name] = sequence
+            else:
+                print fasta_name
+
+    # Find alignment length
+    kk = bash1.keys()
+    key0 = kk[0]
+    seq0 = bash1[key0]
+    ln_seq = len(seq0)
+
+    F1.close()
+    
+    return(bash1)
+#####################################
+
+
+
+##################
+###### DEF2 ######
+##################
+def base_composition(seq):
+      count_A=string.count(seq, "A")
+      count_T=string.count(seq, "T")
+      count_C=string.count(seq, "C")
+      count_G=string.count(seq, "G")
+
+
+      CG = count_C+count_G
+      AT = count_T+count_A
+      
+      AG = count_A+count_G
+      TC = count_T+count_C
+      
+      ## 1 ## Search for compositional bias in genome as marker of thermal adaptation: CG vs AT
+      ratio_CG_AT=float(CG)/float(AT)
+      
+      ## 2 ## Search for compositional bias in genome as marker of thermal adaptation: AG vs TC
+      ratio_purine_pyrimidine=float(AG)/float(TC)
+
+      ## 3 ## Nucleotide proportion
+      ln = len(seq)
+      prop_A = float(count_A)/float(ln)
+      prop_T = float(count_T)/float(ln)
+      prop_C = float(count_C)/float(ln)
+      prop_G = float(count_G)/float(ln)
+      
+
+      return(ratio_CG_AT, ratio_purine_pyrimidine, prop_A, prop_T, prop_C, prop_G)
+##############################################
+
+
+##################
+###### DEF3 ######
+##################
+def aa_composition1(seq):
+    
+    ## 1 ## count occurence of AA
+    count_K=string.count(seq,"K")
+    count_R=string.count(seq,"R")
+    count_A=string.count(seq,"A")
+    count_F=string.count(seq,"F")
+    count_I=string.count(seq,"I")
+    count_L=string.count(seq,"L")
+    count_M=string.count(seq,"M")
+    count_V=string.count(seq,"V")
+    count_W=string.count(seq,"W")
+    count_N=string.count(seq,"N")
+    count_Q=string.count(seq,"Q")
+    count_S=string.count(seq,"S")
+    count_T=string.count(seq,"T")
+    count_H=string.count(seq,"H")
+    count_Y=string.count(seq,"Y")
+    count_C=string.count(seq,"C")
+    count_D=string.count(seq,"D")
+    count_E=string.count(seq,"E")
+    count_P=string.count(seq,"P")
+    count_G=string.count(seq,"G")
+    
+    
+
+    ## 2 ## compute relative proportion
+    TOTAL=count_K+count_R+count_A+count_F+count_I+count_L+count_M+count_V+count_W+count_N+count_Q+count_S+count_T+count_H+count_Y+count_C+count_D+count_E+count_P+count_G
+    if (TOTAL!=0):
+        ln = TOTAL
+    
+        prop_K=float(count_K)/float(ln)
+        prop_R=float(count_R)/float(ln)
+        prop_A=float(count_A)/float(ln)
+        prop_F=float(count_F)/float(ln)
+        prop_I=float(count_I)/float(ln)
+        prop_L=float(count_L)/float(ln)
+        prop_M=float(count_M)/float(ln)
+        prop_V=float(count_V)/float(ln)
+        prop_W=float(count_W)/float(ln)
+        prop_N=float(count_N)/float(ln)
+        prop_Q=float(count_Q)/float(ln)
+        prop_S=float(count_S)/float(ln)
+        prop_T=float(count_T)/float(ln)
+        prop_H=float(count_H)/float(ln)
+        prop_Y=float(count_Y)/float(ln)
+        prop_C=float(count_C)/float(ln)
+        prop_D=float(count_D)/float(ln)
+        prop_E=float(count_E)/float(ln)
+        prop_P=float(count_P)/float(ln)
+        prop_G=float(count_G)/float(ln)
+    else:
+        prop_K=0
+        prop_R=0
+        prop_A=0
+        prop_F=0
+        prop_I=0
+        prop_L=0
+        prop_M=0
+        prop_V=0
+        prop_W=0
+        prop_N=0
+        prop_Q=0
+        prop_S=0
+        prop_T=0
+        prop_H=0
+        prop_Y=0
+        prop_C=0
+        prop_D=0
+        prop_E=0
+        prop_P=0
+        prop_G=0
+
+
+
+        
+    return(prop_K,prop_R,prop_A,prop_F,prop_I,prop_L,prop_M,prop_V,prop_W,prop_N,prop_Q,prop_S,prop_T,prop_H,prop_Y,prop_C,prop_D,prop_E,prop_P,prop_G)
+      
+##################
+###### DEF4 ######
+##################
+def aa_composition2(seq):
+    
+    ## 1 ## count occurence of AA
+    count_K=string.count(seq,"K")
+    count_R=string.count(seq,"R")
+    count_A=string.count(seq,"A")
+    count_F=string.count(seq,"F")
+    count_I=string.count(seq,"I")
+    count_L=string.count(seq,"L")
+    count_M=string.count(seq,"M")
+    count_V=string.count(seq,"V")
+    count_W=string.count(seq,"W")
+    count_N=string.count(seq,"N")
+    count_Q=string.count(seq,"Q")
+    count_S=string.count(seq,"S")
+    count_T=string.count(seq,"T")
+    count_H=string.count(seq,"H")
+    count_Y=string.count(seq,"Y")
+    count_C=string.count(seq,"C")
+    count_D=string.count(seq,"D")
+    count_E=string.count(seq,"E")
+    count_P=string.count(seq,"P")
+    count_G=string.count(seq,"G")
+
+
+	
+    ## 2 ## compute seq length
+    TOTAL=count_K+count_R+count_A+count_F+count_I+count_L+count_M+count_V+count_W+count_N+count_Q+count_S+count_T+count_H+count_Y+count_C+count_D+count_E+count_P+count_G
+    if (TOTAL!=0):
+
+        ln = TOTAL
+        ##3 Famous Hyperthermophile Prokaryotes criterias
+    
+        # 3.1. IVYWREL estimator  => positivelly correlated with otpimal growth
+        count_IVYWREL = count_I+count_V+count_Y+count_W+count_R+count_E+count_L
+        prop_IVYWREL = float(count_IVYWREL)/float(ln)
+    
+        # 3.2. ERK estimator (i.e. ERK vs DNQTSHA) => positivelly correlated with optimal growth temperature
+        # ERK alone
+        count_ERK = count_E + count_R + count_K
+        prop_ERK = float(count_ERK)/float(ln)
+        # DNQTSHA alone
+        count_DNQTSH = count_D+count_N+count_Q+count_T+count_S+count_H
+        prop_DNQTSH=float(count_DNQTSH)/float(ln)
+        # ERK vs DNQTSH
+        if count_DNQTSH != 0:
+            ratio_ERK_vs_DNQTSH = float(count_ERK)/float(count_DNQTSH)
+        else:
+            ratio_ERK_vs_DNQTSH=-1
+        # EK/QH estimator
+        count_EK = count_E+count_K
+        count_QH = count_Q+count_H
+
+        prop_EK = float(count_EK)/float(ln)
+        prop_QH = float(count_QH)/float(ln)
+
+        if count_QH != 0:
+            ratio_EK_vs_QH = float(count_EK)/float(count_QH)
+        else:
+            ratio_EK_vs_QH=-1     ## "-1" will indicate the impossibility to compute the ratio (coz the numerator)
+
+        ## 4 ## Mutationnal bias hypothesis => AT rich: favor FYMINK   // GC rich: favor GARP
+        ## The mutational bias model predict a linear relationship between GARP vs FYMINK    ==> so if outliers to that, it means that the excess of GARP or FYMINK are not explained by the mutationnal bias model but by other thing ... selection!!???
+        count_FYMINK=count_F+count_Y+count_M+count_I+count_N+count_K
+        prop_FYMINK = float(count_FYMINK)/float(ln)
+
+        count_GARP=count_G+count_A+count_R+count_P
+        prop_GARP=float(count_GARP)/float(ln)
+
+        ## 5 ## Hydophobicity hypothesis [should INCREASE with thermal adaptation]
+        ## 5.1. AL
+        count_AVLIMFYW = count_A+count_V+count_L+count_I+count_F+count_Y+count_W+count_M
+        prop_AVLIMFYW=float(count_AVLIMFYW)/float(ln)
+        ## 5.2. Only non-aromatic
+        count_AVLIM = count_A+count_V+count_L+count_I+count_M
+        prop_AVLIM=float(count_AVLIM)/float(ln)
+        ## 5.3. Only aromatic (have they higher residus volume?? in such case opposite hypothesis based on residu volume, predict DECREASE for these aa in composition) 
+        count_FYW = count_F+count_Y+count_W
+        prop_FYW=float(count_FYW)/float(ln)
+
+        ## 6 ## Charged hypothesis  => positivelly correlated with optimal growth temperature
+        # All charged
+        count_RHKDE = count_R + count_H +count_K + count_D + count_E
+        prop_RHKDE = float(count_RHKDE)/float(ln)
+        # Only positive
+        count_RHK = count_R + count_H +count_K
+        prop_RHK = float(count_RHK)/float(ln)
+        # Only negative
+        count_DE = count_D + count_E
+        prop_DE = float(count_DE)/float(ln)
+    
+        ## 7 ## Neutral polar hypothesis  [should DECREASE with thermal adaptation]
+        count_STNQ = count_S+count_T+count_N+count_Q
+        prop_STNQ=float(count_STNQ)/float(ln)
+
+
+        ## 9 ## PAYRE VS MGDS (FONTANILLAS CRITERIA)
+        ## 9.1 ## Didier's criteria 1 = SMALL / BIG
+        count_PAYRE = count_A+count_Y+count_P+count_R+count_E
+        prop_PAYRE=float(count_PAYRE)/float(ln)
+        count_MVGDS = count_V+count_M+count_S+count_G+count_D
+        prop_MVGDS=float(count_MVGDS)/float(ln)
+        if count_MVGDS!= 0:
+            ratio_PAYRE_vs_MVGDS = float(count_PAYRE)/float(count_MVGDS)
+        else:
+            ratio_PAYRE_vs_MVGDS=-1     ## "-1" will indicate the impossibility to compute the ratio (coz the numerator)
+
+        ## 9.2 ## Didier's criteria 2 = VERY SMALL / BIG
+        count_AC = count_A+count_C
+        prop_AC=float(count_AC)/float(ln)
+
+        #count_VLIM = count_V+count_L+count_I+count_M
+        if count_MVGDS != 0:
+            ratio_AC_vs_MVGDS = float(count_AC)/float(count_MVGDS)
+        else:
+            ratio_AC_vs_MVGDS=-1     ## "-1" will indicate the impossibility to compute the ratio (coz the numerator)
+    else:
+        count_IVYWREL=0
+        prop_IVYWREL=0
+        count_ERK=0
+        prop_ERK=0
+        count_DNQTSH=0
+        prop_DNQTSH=0
+        ratio_ERK_vs_DNQTSH=0
+        count_EK=0
+        prop_EK=0
+        count_QH=0
+        prop_QH=0
+        ratio_EK_vs_QH=0
+        count_FYMINK=0
+        prop_FYMINK=0
+        count_GARP=0
+        prop_GARP=0
+        count_AVLIMFYW=0
+        prop_AVLIMFYW=0
+        count_AVLIM=0
+        prop_AVLIM=0
+        count_FYW=0
+        prop_FYW=0
+        count_STNQ=0
+        prop_STNQ=0
+        count_MVGDS=0
+        prop_MVGDS=0
+        count_PAYRE=0
+        prop_PAYRE=0
+        count_AC=0
+        prop_AC=0
+        ratio_PAYRE_vs_MVGDS=0
+        ratio_AC_vs_MVGDS=0
+        count_RHKDE=0
+        prop_RHKDE=0
+        count_RHK=0
+        prop_RHK=0
+        count_DE=0
+        prop_DE=0
+
+    return(count_IVYWREL,prop_IVYWREL,count_ERK,prop_ERK,count_DNQTSH,prop_DNQTSH,ratio_ERK_vs_DNQTSH,count_EK,prop_EK,count_QH,prop_QH,ratio_EK_vs_QH,count_FYMINK,prop_FYMINK,count_GARP,prop_GARP,count_AVLIMFYW, prop_AVLIMFYW,count_AVLIM,prop_AVLIM,count_FYW,prop_FYW,count_STNQ, prop_STNQ, count_MVGDS,prop_MVGDS, count_PAYRE,prop_PAYRE, count_AC,prop_AC, ratio_PAYRE_vs_MVGDS, ratio_AC_vs_MVGDS, count_RHKDE,prop_RHKDE,count_RHK,prop_RHK,count_DE,prop_DE)
+#####################
+
+
+##################
+###### DEF5 ######
+##################
+def aa_properties(fileIN_aaProperties):
+    next = fileIN_aaProperties.readline()    ## JUMP HEADERS
+
+    bash_aa_properties={}
+
+    while 1:
+        next = fileIN_aaProperties.readline()
+        if not next:
+            break
+
+        S1 = string.split(next, ",")
+
+        aa_name = S1[1]
+        S2 = string.split(aa_name, "/")
+        aa_code = S2[1][:-1]
+
+        frequencies = S1[2][:-1]
+        Residue_Weight = S1[5]
+        Residue_Volume = S1[6]
+        Partial_specific_volume = S1[7]
+        Hydration = S1[8]
+
+        bash_aa_properties[aa_code] = [frequencies,Residue_Weight,Residue_Volume,Partial_specific_volume,Hydration]
+
+    return(bash_aa_properties)
+    
+    
+##################
+###### DEF6 ######
+##################
+def sequence_properties_from_aa_properties(seq, bash_properties):
+    
+    ## 1 ## count occurence of AA
+    count_K=string.count(seq,"K")
+    count_R=string.count(seq,"R")
+    count_A=string.count(seq,"A")
+    count_F=string.count(seq,"F")
+    count_I=string.count(seq,"I")
+    count_L=string.count(seq,"L")
+    count_M=string.count(seq,"M")
+    count_V=string.count(seq,"V")
+    count_W=string.count(seq,"W")
+    count_N=string.count(seq,"N")
+    count_Q=string.count(seq,"Q")
+    count_S=string.count(seq,"S")
+    count_T=string.count(seq,"T")
+    count_H=string.count(seq,"H")
+    count_Y=string.count(seq,"Y")
+    count_C=string.count(seq,"C")
+    count_D=string.count(seq,"D")
+    count_E=string.count(seq,"E")
+    count_P=string.count(seq,"P")
+    count_G=string.count(seq,"G")
+
+    TOTAL=count_K+count_R+count_A+count_F+count_I+count_L+count_M+count_V+count_W+count_N+count_Q+count_S+count_T+count_H+count_Y+count_C+count_D+count_E+count_P+count_G
+
+    if (TOTAL!=0):
+
+
+        ## 2 ## Compute properties 1: Residue Weight (Mr) (UNIT:Daltons):
+
+        Total_Residue_Weight = count_K*float(bash_properties["K"][1]) + count_R*float(bash_properties["R"][1]) + count_A*float(bash_properties["A"][1]) + count_F*float(bash_properties["F"][1]) + count_I*float(bash_properties["I"][1]) + count_L*float(bash_properties["L"][1]) + count_M*float(bash_properties["M"][1]) + count_V*float(bash_properties["V"][1]) + count_W*float(bash_properties["W"][1]) + count_N*float(bash_properties["N"][1]) + count_Q*float(bash_properties["Q"][1]) + count_S*float(bash_properties["S"][1]) + count_T*float(bash_properties["T"][1]) + count_H*float(bash_properties["H"][1]) + count_Y*float(bash_properties["Y"][1]) + count_C*float(bash_properties["C"][1]) + count_D*float(bash_properties["D"][1]) + count_E*float(bash_properties["E"][1]) + count_P*float(bash_properties["P"][1]) + count_G*float(bash_properties["G"][1])
+        Total_Residue_Volume = count_K*float(bash_properties["K"][2]) + count_R*float(bash_properties["R"][2]) + count_A*float(bash_properties["A"][2]) + count_F*float(bash_properties["F"][2]) + count_I*float(bash_properties["I"][2]) + count_L*float(bash_properties["L"][2]) + count_M*float(bash_properties["M"][2]) + count_V*float(bash_properties["V"][2]) + count_W*float(bash_properties["W"][2]) + count_N*float(bash_properties["N"][2]) + count_Q*float(bash_properties["Q"][2]) + count_S*float(bash_properties["S"][2]) + count_T*float(bash_properties["T"][2]) + count_H*float(bash_properties["H"][2]) + count_Y*float(bash_properties["Y"][2]) + count_C*float(bash_properties["C"][2]) + count_D*float(bash_properties["D"][2]) + count_E*float(bash_properties["E"][2]) + count_P*float(bash_properties["P"][2]) + count_G*float(bash_properties["G"][2])
+        Total_Partial_specific_volume = count_K*float(bash_properties["K"][3]) + count_R*float(bash_properties["R"][3]) + count_A*float(bash_properties["A"][3]) + count_F*float(bash_properties["F"][3]) + count_I*float(bash_properties["I"][3]) + count_L*float(bash_properties["L"][3]) + count_M*float(bash_properties["M"][3]) + count_V*float(bash_properties["V"][3]) + count_W*float(bash_properties["W"][3]) + count_N*float(bash_properties["N"][3]) + count_Q*float(bash_properties["Q"][3]) + count_S*float(bash_properties["S"][3]) + count_T*float(bash_properties["T"][3]) + count_H*float(bash_properties["H"][3]) + count_Y*float(bash_properties["Y"][3]) + count_C*float(bash_properties["C"][3]) + count_D*float(bash_properties["D"][3]) + count_E*float(bash_properties["E"][3]) + count_P*float(bash_properties["P"][3]) + count_G*float(bash_properties["G"][3])
+        Total_Hydration = count_K*float(bash_properties["K"][4]) + count_R*float(bash_properties["R"][4]) + count_A*float(bash_properties["A"][4]) + count_F*float(bash_properties["F"][4]) + count_I*float(bash_properties["I"][4]) + count_L*float(bash_properties["L"][4]) + count_M*float(bash_properties["M"][4]) + count_V*float(bash_properties["V"][4]) + count_W*float(bash_properties["W"][4]) + count_N*float(bash_properties["N"][4]) + count_Q*float(bash_properties["Q"][4]) + count_S*float(bash_properties["S"][4]) + count_T*float(bash_properties["T"][4]) + count_H*float(bash_properties["H"][4]) + count_Y*float(bash_properties["Y"][4]) + count_C*float(bash_properties["C"][4]) + count_D*float(bash_properties["D"][4]) + count_E*float(bash_properties["E"][4]) + count_P*float(bash_properties["P"][4]) + count_G*float(bash_properties["G"][4])
+    else:
+        Total_Residue_Weight=0
+        Total_Residue_Volume=0
+        Total_Partial_specific_volume=0
+        Total_Hydration=0
+    
+    return(Total_Residue_Weight,Total_Residue_Volume,Total_Partial_specific_volume,Total_Hydration)
+
+########################################################
+
+
+
+###################
+### RUN RUN RUN ###
+###################
+import sys,os,zipfile,shutil,subprocess,string
+
+##Create specific folders
+Path_IN_loci_NUC = "./IN_AA"
+outpath= "./OUT"
+os.makedirs(Path_IN_loci_NUC)
+os.makedirs(outpath)
+
+
+#Check if the file is a zip or fasta file
+
+the_zip_file = zipfile.ZipFile(sys.argv[1])
+ret = the_zip_file.testzip()
+
+if ret is not None:
+    shutil.copy2(sys.argv[1], './IN_AA/input.fasta')
+else:
+    cmd="unzip %s -d ./IN_AA"%(sys.argv[1])
+    os.system(cmd)
+
+
+
+## 1 ## List taxa
+LT=[]
+cmd="grep '>' %s" % sys.argv[2]
+result = subprocess.check_output(cmd, shell=True)
+result=result.split('\n')
+for i in result:   
+    sp=i[1:]
+    if sp !='':
+        LT.append(sp)
+print LT
+
+
+## 2 ## PathIN
+fileIN_properties = open("%s/01_AminoAcid_Properties2.csv"%(script_path), "r")
+Path_IN_loci_AA = "./IN_AA"
+#Path_IN_loci_AA = "02_CDS_No_Missing_Data_aa_CDS_withM"
+Lloci_AA = os.listdir(Path_IN_loci_AA)
+
+## 3 ## PathOUT
+
+## 3.1 ## PROT composition
+fileOUT_PROT_ALL=open("./OUT/13_prot_compositions_All_AA.csv","w")
+fileOUT_PROT_ALL.write("LOCUS,")
+for taxa in LT:
+    fileOUT_PROT_ALL.write("%s_prop_K,%s_prop_R,%s_prop_A,%s_prop_F,%s_prop_I,%s_prop_L,%s_prop_M,%s_prop_V,%s_prop_W,%s_prop_N,%s_prop_Q,%s_prop_S,%s_prop_T,%s_prop_H,%s_prop_Y,%s_prop_C,%s_prop_D,%s_prop_E,%s_prop_P,%s_prop_G," %(taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa))
+fileOUT_PROT_ALL.write("\n")
+
+## 3.2 ## PROT IVYWREL
+fileOUT_IVYWREL=open("./OUT/14_IVYWREL.csv","w")
+fileOUT_IVYWREL.write("LOCUS,")
+for taxa in LT:
+    fileOUT_IVYWREL.write("%s_count_IVYWREL,%s_prop_IVYWREL," %(taxa,taxa))
+fileOUT_IVYWREL.write("\n")
+
+
+## 3.3 ## PROT ERK_DNQTSHA
+fileOUT_ERK_DNQTSH=open("./OUT/15_ERK_DNQTSH.csv","w")
+fileOUT_ERK_DNQTSH.write("LOCUS,")
+for taxa in LT:
+    fileOUT_ERK_DNQTSH.write("%s_count_ERK,%s_prop_ERK,%s_count_DNQTSH,%s_prop_DNQTSH,%s_ratio_ERK_vs_DNQTSH," %(taxa,taxa,taxa,taxa,taxa))
+fileOUT_ERK_DNQTSH.write("\n")
+
+## 3.4 ## PROT EK_QH
+fileOUT_EK_QH=open("./OUT/16_EK_QH.csv","w")
+fileOUT_EK_QH.write("LOCUS,")
+for taxa in LT:
+    fileOUT_EK_QH.write("%s_count_EK,%s_prop_EK,%s_count_QH,%s_prop_QH,%s_ratio_EK_vs_QH," %(taxa,taxa,taxa,taxa,taxa))
+fileOUT_EK_QH.write("\n")
+
+
+## 3.5 ## PROT FYMINK_GARP
+fileOUT_FYMINK_GARP=open("./OUT/17_FYMINK_GARP.csv","w")
+fileOUT_FYMINK_GARP.write("LOCUS,")
+for taxa in LT:
+    fileOUT_FYMINK_GARP.write("%s_count_FYMINK,%s_prop_FYMINK,%s_count_GARP,%s_prop_GARP," %(taxa,taxa,taxa,taxa))
+fileOUT_FYMINK_GARP.write("\n")
+
+
+## 3.6 ## PROT AVLIMFYW
+fileOUT_AVLIMFYW=open("./OUT/18_AVLIMFYW.csv","w")
+fileOUT_AVLIMFYW.write("LOCUS,")
+for taxa in LT:
+    fileOUT_AVLIMFYW.write("%s_count_AVLIMFYW,%s_prop_AVLIMFYW,%s_count_AVLIM,%s_prop_AVLIM,%s_count_FYW,%s_prop_FYW," %(taxa,taxa,taxa,taxa,taxa,taxa))
+fileOUT_AVLIMFYW.write("\n")
+
+## 3.7 ## PROT STNQ
+fileOUT_STNQ=open("./OUT/19_STNQ.csv","w")
+fileOUT_STNQ.write("LOCUS,")
+for taxa in LT:
+    fileOUT_STNQ.write("%s_count_STNQ,%s_prop_STNQ," %(taxa,taxa))
+fileOUT_STNQ.write("\n")
+
+## 3.8 ## PROT RHKDE
+fileOUT_RHKDE=open("./OUT/20_RHKDE.csv","w")
+fileOUT_RHKDE.write("LOCUS,")
+for taxa in LT:
+    fileOUT_RHKDE.write("%s_count_RHKDE,%s_prop_RHKDE,%s_count_RHK,%s_prop_RHK,%s_count_DE,%s_prop_DE," %(taxa,taxa,taxa,taxa,taxa,taxa))
+fileOUT_RHKDE.write("\n")
+
+## 3.9 ## PROT DIDER CRITERIA
+fileOUT_PAYRE=open("./OUT/21_PAYRE-MVGDS.csv","w")
+fileOUT_PAYRE.write("LOCUS,")
+for taxa in LT:
+    fileOUT_PAYRE.write("%s_count_PAYRE,%s_prop_PAYRE,%s_count_AC,%s_prop_AC,%s_count_MVGDS,%s_prop_MVGDS,%s_ratio_PAYRE_vs_MVGDS,%s_ratio_AC_vs_MVGDS," %(taxa,taxa,taxa,taxa,taxa,taxa,taxa,taxa))
+fileOUT_PAYRE.write("\n")
+
+## 3.10 ## PROT Total residue weight
+fileOUT_TotalResidueWeight=open("./OUT/22_TotalResidueWeight.csv","w")
+fileOUT_TotalResidueWeight.write("LOCUS,")
+for taxa in LT:
+    fileOUT_TotalResidueWeight.write("%s_Total_Residue_Weight," %taxa)
+fileOUT_TotalResidueWeight.write("\n")
+
+## 3.11 ## PROT Total residue volume
+fileOUT_TotalResidueVolume=open("./OUT/23_TotalResidueVolume.csv","w")
+fileOUT_TotalResidueVolume.write("LOCUS,")
+for taxa in LT:
+    fileOUT_TotalResidueVolume.write("%s_Total_Residue_Volume," %taxa)
+fileOUT_TotalResidueVolume.write("\n")
+
+## 3.12 ## PROT Total partial specific volume
+fileOUT_TotalPartialSpecificVolume=open("./OUT/24_TotalPartialSpecificVolume.csv","w")
+fileOUT_TotalPartialSpecificVolume.write("LOCUS,")
+for taxa in LT:
+    fileOUT_TotalPartialSpecificVolume.write("%s_Total_Partial_Specific_Volume," %taxa)
+fileOUT_TotalPartialSpecificVolume.write("\n")
+
+## 3.13 ## PROT Total hydratation
+fileOUT_TotalHydratation=open("./OUT/25_TotalHydratation.csv","w")
+fileOUT_TotalHydratation.write("LOCUS,")
+for taxa in LT:
+    fileOUT_TotalHydratation.write("%s_Total_Hydratation," %taxa)
+fileOUT_TotalHydratation.write("\n")
+
+
+#####################
+## 4 ## Process Loci
+#####################
+bash_aa_properties = aa_properties(fileIN_properties)
+
+for locus in Lloci_AA:
+    print locus
+    path_locus = "%s/%s" %(Path_IN_loci_AA, locus)
+    bash = dico(path_locus,LT)
+
+    #print bash
+    
+    fileOUT_PROT_ALL.write("%s," %locus)
+    fileOUT_IVYWREL.write("%s," %locus)
+    fileOUT_ERK_DNQTSH.write("%s," %locus)
+    fileOUT_EK_QH.write("%s," %locus)
+    fileOUT_FYMINK_GARP.write("%s," %locus)
+    fileOUT_AVLIMFYW.write("%s," %locus)
+    fileOUT_STNQ.write("%s," %locus)
+    fileOUT_RHKDE.write("%s," %locus)
+    fileOUT_PAYRE.write("%s," %locus)
+    fileOUT_TotalResidueWeight.write("%s," %locus)
+    fileOUT_TotalResidueVolume.write("%s," %locus)
+    fileOUT_TotalPartialSpecificVolume.write("%s," %locus)
+    fileOUT_TotalHydratation.write("%s," %locus)
+    
+    for taxa in LT:
+        if taxa in bash.keys():
+            seq = bash[taxa]
+            prop_K,prop_R,prop_A,prop_F,prop_I,prop_L,prop_M,prop_V,prop_W,prop_N,prop_Q,prop_S,prop_T,prop_H,prop_Y,prop_C,prop_D,prop_E,prop_P,prop_G = aa_composition1(seq)   ### DEF3 ###
+            count_IVYWREL,prop_IVYWREL,count_ERK,prop_ERK,count_DNQTSH,prop_DNQTSH,ratio_ERK_vs_DNQTSH,count_EK,prop_EK,count_QH,prop_QH,ratio_EK_vs_QH,count_FYMINK,prop_FYMINK,count_GARP,prop_GARP,count_AVLIMFYW,prop_AVLIMFYW,count_AVLIM,prop_AVLIM,count_FYW,prop_FYW,count_STNQ,prop_STNQ, count_MVGDS,prop_MVGDS, count_PAYRE,prop_PAYRE, count_AC,prop_AC, ratio_PAYRE_vs_MVGDS, ratio_AC_vs_MVGDS,count_RHKDE,prop_RHKDE,count_RHK,prop_RHK,count_DE,prop_DE = aa_composition2(seq)   ### DEF4 ###
+            Total_Residue_Weight,Total_Residue_Volume,Total_Partial_Specific_Volume,Total_Hydration = sequence_properties_from_aa_properties(seq, bash_aa_properties)   ### DEF6 ###
+        
+            fileOUT_PROT_ALL.write("%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f," %(prop_K,prop_R,prop_A,prop_F,prop_I,prop_L,prop_M,prop_V,prop_W,prop_N,prop_Q,prop_S,prop_T,prop_H,prop_Y,prop_C,prop_D,prop_E,prop_P,prop_G))
+            fileOUT_IVYWREL.write("%.5f,%.5f," %(count_IVYWREL, prop_IVYWREL))
+            fileOUT_ERK_DNQTSH.write("%.5f,%.5f,%.5f,%.5f,%.5f," %(count_ERK,prop_ERK,count_DNQTSH,prop_DNQTSH,ratio_ERK_vs_DNQTSH))
+            fileOUT_EK_QH.write("%.5f,%.5f,%.5f,%.5f,%.5f," %(count_EK,prop_EK,count_QH,prop_QH,ratio_EK_vs_QH))
+            fileOUT_FYMINK_GARP.write("%.5f,%.5f,%.5f,%.5f," %(count_FYMINK,prop_FYMINK,count_GARP,prop_GARP))
+            fileOUT_AVLIMFYW.write("%.5f,%.5f,%.5f,%.5f,%.5f,%.5f," %(count_AVLIMFYW,prop_AVLIMFYW,count_AVLIM,prop_AVLIM,count_FYW,prop_FYW))
+            fileOUT_STNQ.write("%.5f,%.5f," %(count_STNQ,prop_STNQ))
+            fileOUT_RHKDE.write("%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,"%(count_RHKDE,prop_RHKDE,count_RHK,prop_RHK,count_DE,prop_DE))
+            fileOUT_PAYRE.write("%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f," %(count_PAYRE,prop_PAYRE,count_AC,prop_AC,count_MVGDS,prop_MVGDS,ratio_PAYRE_vs_MVGDS,ratio_AC_vs_MVGDS))
+            fileOUT_TotalResidueWeight.write("%.5f," %Total_Residue_Weight)
+            fileOUT_TotalResidueVolume.write("%.5f," %Total_Residue_Volume)
+            fileOUT_TotalPartialSpecificVolume.write("%.5f," %(Total_Partial_Specific_Volume))
+            fileOUT_TotalHydratation.write("%.5f," % Total_Hydration)
+        
+    ## END LINE
+    fileOUT_PROT_ALL.write("\n")
+    fileOUT_IVYWREL.write("\n")
+    fileOUT_ERK_DNQTSH.write("\n")
+    fileOUT_EK_QH.write("\n")
+    fileOUT_FYMINK_GARP.write("\n")
+    fileOUT_AVLIMFYW.write("\n")
+    fileOUT_STNQ.write("\n")
+    fileOUT_RHKDE.write("\n")    
+    fileOUT_PAYRE.write("\n")
+    fileOUT_TotalResidueWeight.write("\n")
+    fileOUT_TotalResidueVolume.write("\n")
+    fileOUT_TotalPartialSpecificVolume.write("\n")
+    fileOUT_TotalHydratation.write("\n")
+
+    
+    
+